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UNIT I: 

 
Problem Solving by Search-I: Introduction to AI, Intelligent Agents 

Problem Solving by Search –II: Problem-Solving Agents, Searching for Solutions, Uninformed Search Strategies: 

Breadth-first search, Uniform cost search, Depth-first search, Iterative deepening Depth-first search, 

Bidirectional search, Informed (Heuristic) Search Strategies: Greedy best-first search, A* search, Heuristic 

Functions, Beyond Classical Search: Hill-climbing search, Simulated annealing search, Local Search in 

Continuous Spaces. 

Introduction: 

 
 Artificial Intelligence is concerned with the design of intelligence in an artificial device. The term 

was coined by John McCarthy in 1956. 

 Intelligence is the ability to acquire, understand and apply the knowledge to achieve goals in the 

world. 

 AI is the study of the mental faculties through the use of computational models 

 AI is the study of intellectual/mental processes as computational processes. 

 AI program will demonstrate a high level of intelligence to a degree that equals or exceeds the 

intelligence required of a human in performing some task. 

 AI is unique, sharing borders with Mathematics, Computer Science, Philosophy, 

Psychology, Biology, Cognitive Science and many others. 

 Although there is no clear definition of AI or even Intelligence, it can be described as an attempt to 

build machines that like humans can think and act, able to learn and use knowledge to solve 

problems on their own. 

History of AI: 
 

Important research that laid the groundwork for AI: 

 

 In 1931, Goedel layed the foundation of Theoretical Computer Science1920-30s: 

He published the first universal formal language and showed that math itself is either 

flawed or allows for unprovable but true statements. 

 In 1936, Turing reformulated Goedel’s result and church’s extension thereof. 
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 In 1956, John McCarthy coined the term "Artificial Intelligence" as the topic of 

the Dartmouth Conference, the first conference devoted to the subject. 

 In 1957, The General Problem Solver (GPS) demonstrated by Newell, Shaw & Simon 

 In 1958, John McCarthy (MIT) invented the Lisp language. 

 In 1959, Arthur Samuel (IBM) wrote the first game-playing program, for checkers, to 

achieve sufficient skill to challenge a world champion. 

 In 1963, Ivan Sutherland's MIT dissertation on Sketchpad introduced the idea of interactive 

graphics into computing. 

 In 1966, Ross Quillian (PhD dissertation, Carnegie Inst. of Technology; now CMU) 

demonstrated semantic nets 

 In 1967, Dendral program (Edward Feigenbaum, Joshua Lederberg, Bruce Buchanan, 

Georgia Sutherland at Stanford) demonstrated to interpret mass spectra on organic 

chemical compounds. First successful knowledge-based program for scientific reasoning. 

 In 1967, Doug Engelbart invented the mouse at SRI 

 In 1968, Marvin Minsky & Seymour Papert publish Perceptrons, demonstrating limits of 

simple neural nets. 

 In 1972, Prolog developed by Alain Colmerauer. 

 In Mid 80’s, Neural Networks become widely used with the Backpropagation algorithm 

(first described by Werbos in 1974). 

 1990, Major advances in all areas of AI, with significant demonstrations in machine 

learning, intelligent tutoring, case-based reasoning, multi-agent planning, scheduling, 

uncertain reasoning, data mining, natural language understanding and translation, vision, 

virtual reality, games, and other topics. 

 In 1997, Deep Blue beats the World Chess Champion Kasparov 

 In 2002, iRobot, founded by researchers at the MIT Artificial Intelligence Lab, 

introduced Roomba, a vacuum cleaning robot. By 2006, two million had been sold. 

 

Foundations of Artificial Intelligence: 

 Philosophy 
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e.g., foundational issues (can a machine think?), issues of knowledge and believe, mutual 

knowledge 

 Psychology and Cognitive Science 

e.g., problem solving skills 

 Neuro-Science 

e.g., brain architecture 

 Computer Science And Engineering 

e.g., complexity theory, algorithms, logic and inference, programming languages, and system 

building. 

 Mathematics and Physics 

e.g., statistical modeling, continuous mathematics, 

 Statistical Physics, and Complex Systems. 

 

 
Sub Areas of AI: 

 
1) Game Playing 

Deep Blue Chess program beat world champion Gary Kasparov 

2) Speech Recognition 

PEGASUS spoken language interface to American Airlines' EAASY SABRE reseration 

system, which allows users to obtain flight information and make reservations over the 

telephone. The 1990s has seen significant advances in speech recognition so that limited 

systems are now successful. 

3) Computer Vision 

Face recognition programs in use by banks, government, etc. The ALVINN system from CMU 

autonomously drove a van from Washington, D.C. to San Diego (all but 52 of 2,849 miles), 

averaging 63 mph day and night, and in all weather conditions. Handwriting recognition, 

electronics and manufacturing inspection, photo interpretation, baggage inspection, reverse 

engineering to automatically construct a 3D geometric model. 
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4) Expert Systems 

Application-specific systems that rely on obtaining the knowledge of human experts in an area 

and programming that knowledge into a system. 

a. Diagnostic Systems : MYCIN system for diagnosing bacterial infections of the blood 

and suggesting treatments. Intellipath pathology diagnosis system (AMA approved). 

Pathfinder medical diagnosis system, which suggests tests and makes diagnoses. 

Whirlpool customer assistance center. 

b. System Configuration 

DEC's XCON system for custom hardware configuration. Radiotherapy treatment 

planning. 

c. Financial Decision Making 

Credit card companies, mortgage companies, banks, and the U.S. government employ 

AI systems to detect fraud and expedite financial transactions. For example, AMEX 

credit check. 

d. Classification Systems 

Put information into one of a fixed set of categories using several sources of 

information. E.g., financial decision making systems. NASA developed a system for 

classifying very faint areas in astronomical images into either stars or galaxies with 

very high accuracy by learning from human experts' classifications. 

5) Mathematical Theorem Proving 

Use inference methods to prove new theorems. 

6) Natural Language Understanding 

AltaVista's translation of web pages. Translation of Catepillar Truck manuals into 20 

languages. 

7) Scheduling and Planning 

Automatic scheduling for manufacturing. DARPA's DART system used in Desert Storm and 

Desert Shield operations to plan logistics of people and supplies. American Airlines rerouting 

contingency planner. European space agency planning and scheduling of spacecraft assembly, 

integration and verification. 

8) Artificial Neural Networks: 
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9) Machine Learning 

 
Application of AI: 

 
AI algorithms have attracted close attention of researchers and have also been applied successfully 

to solve problems in engineering. Nevertheless, for large and complex problems, AI algorithms 

consume considerable computation time due to stochastic feature of the search approaches 

 

1) Business; financial strategies 

 
2) Engineering: check design, offer suggestions to create new product, expert systems for 

all engineering problems 

 

3) Manufacturing: assembly, inspection and maintenance 

 
4) Medicine: monitoring, diagnosing 

 
5) Education: in teaching 

 
6) Fraud detection 

 
7) Object identification 

 
8) Information retrieval 

 
9) Space shuttle scheduling 

 
Building AI Systems: 

1) Perception 

Intelligent biological systems are physically embodied in the world and experience the world 

through their sensors (senses). For an autonomous vehicle, input might be images from a camera 

and range information from a rangefinder. For a medical diagnosis system, perception is the set of 

symptoms and test results that have been obtained and input to the system manually. 
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2) Reasoning 

Inference, decision-making, classification from what is sensed and what the internal "model" is of 

the world. Might be a neural network, logical deduction system, Hidden Markov Model induction, 

heuristic searching a problem space, Bayes Network inference, genetic algorithms, etc. 

Includes areas of knowledge representation, problem solving, decision theory, planning, game 

theory, machine learning, uncertainty reasoning, etc. 

3) Action 

Biological systems interact within their environment by actuation, speech, etc. All behavior is 

centered around actions in the world. Examples include controlling the steering of a Mars rover or 

autonomous vehicle, or suggesting tests and making diagnoses for a medical diagnosis system. 

Includes areas of robot actuation, natural language generation, and speech synthesis. 

The definitions of AI: 

 
a) "The exciting new effort to make 

computers think . . . machines with minds, 

in the full and literal sense" (Haugeland, 

1985) 
 

"The automation of] activities that we 

associate with human thinking, activities 

such as decision-making, problem solving, 

learning..."(Bellman, 1978) 

b) "The study of mental faculties through 

the use of computational models" 

(Charniak and McDermott, 1985) 
 

"The study of the computations that 

make it possible to perceive, reason, 

and act" (Winston, 1992) 

c) "The art of creating machines that perform 

functions that require intelligence when 

performed by people" (Kurzweil, 1990) 

 

"The study of how to make computers do 

things at which, at the moment, people 

are better" (Rich and Knight, 1 99 1 ) 

d) "A field of study that seeks to explain 

and emulate intelligent behavior in 

terms of computational processes" 

(Schalkoff, 1 990) 
 

"The branch of computer science that 

is concerned with the automation of 

intelligent behavior" (Luger and 

Stubblefield, 1993) 

The definitions on the top, (a) and (b) are concerned with reasoning, whereas those on the bottom, (c) 

and (d) address behavior.The definitions on the left, (a) and (c) measure success in terms of human 

performance, and those on the right, (b) and (d) measure the ideal concept of intelligence called 

rationality 

Intelligent Systems: 
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In order to design intelligent systems, it is important to categorize them into four categories (Luger and 

Stubberfield 1993), (Russell and Norvig, 2003) 

1. Systems that think like humans 

2. Systems that think rationally 

3. Systems that behave like humans 

4. Systems that behave rationally 
 

 Human- Like Rationally 

 
 

Think: 

 

Cognitive Science Approach 

 

“Machines that think like humans” 

 

Laws of thought Approach 

 

“ Machines that think Rationally” 

 
 

Act: 

 

Turing Test Approach 

 

“Machines that behave like humans” 

 

Rational Agent Approach 

 

“Machines that behave Rationally” 

 
Scientific Goal: To determine which ideas about knowledge representation, learning, rule systems search, 

and so on, explain various sorts of real intelligence. 

Engineering Goal: To solve real world problems using AI techniques such as Knowledge representation, 

learning, rule systems, search, and so on. 

Traditionally, computer scientists and engineers have been more interested in the engineering goal, 

while psychologists, philosophers and cognitive scientists have been more interested in the scientific goal. 

Cognitive Science: Think Human-Like 

a. Requires a model for human cognition. Precise enough models allow simulation by 

computers. 

b. Focus is not just on behavior and I/O, but looks like reasoning process. 
 

c. Goal is not just to produce human-like behavior but to produce a sequence of steps of the 

reasoning process, similar to the steps followed by a human in solving the same task. 

Laws of thought: Think Rationally 

a. The study of mental faculties through the use of computational models; that it is, the study of 

computations that make it possible to perceive reason and act. 

b. Focus is on inference mechanisms that are probably correct and guarantee an optimal solution. 
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c. Goal is to formalize the reasoning process as a system of logical rules and procedures of inference. 
 

d. Develop systems of representation to allow inferences to be like 

“Socrates is a man. All men are mortal. Therefore Socrates is mortal” 

Turing Test: Act Human-Like 

a. The art of creating machines that perform functions requiring intelligence when performed by 

people; that it is the study of, how to make computers do things which, at the moment, people do 

better. 

b. Focus is on action, and not intelligent behavior centered around the representation of the world 
 

c. Example: Turing Test 
 

o 3 rooms contain: a person, a computer and an interrogator. 

o The interrogator can communicate with the other 2 by teletype (to avoid the 

machine imitate the appearance of voice of the person) 

o The interrogator tries to determine which the person is and which the machine is. 

o The machine tries to fool the interrogator to believe that it is the human, and the 

person also tries to convince the interrogator that it is the human. 

o If the machine succeeds in fooling the interrogator, then conclude that the machine 

is intelligent. 

Rational agent: Act Rationally 

a. Tries to explain and emulate intelligent behavior in terms of computational process; that it is 

concerned with the automation of the intelligence. 

b. Focus is on systems that act sufficiently if not optimally in all situations. 
 

c. Goal is to develop systems that are rational and sufficient 

 

 
The difference between strong AI and weak AI: 

 

Strong AI makes the bold claim that computers can be made to think on a level (at least) equal to humans. 
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Weak AI simply states that some "thinking-like" features can be added to computers to make them more 

useful tools... and this has already started to happen (witness expert systems, drive-by-wire cars and 

speech recognition software). 

AI Problems: 

 

AI problems (speech recognition, NLP, vision, automatic programming, knowledge 

representation, etc.) can be paired with techniques (NN, search, Bayesian nets, production systems, 

etc.).AI problems can be classified in two types: 

 

1. Common-place tasks(Mundane Tasks) 

2. Expert tasks 

 
 

Common-Place Tasks: 

1. Recognizing people, objects. 

2. Communicating (through natural language). 

3. Navigating around obstacles on the streets. 

These tasks are done matter of factly and routinely by people and some other animals. 

Expert tasks: 

1. Medical diagnosis. 

2. Mathematical problem solving 

3. Playing games like chess 

These tasks cannot be done by all people, and can only be performed by skilled specialists. 

Clearly tasks of the first type are easy for humans to perform, and almost all are able to master 

them. The second range of tasks requires skill development and/or intelligence and only some specialists 

can perform them well. However, when we look at what computer systems have been able to achieve to 

date, we see that their achievements include performing sophisticated tasks like medical diagnosis, 

performing symbolic integration, proving theorems and playing chess. 

 

1. Intelligent Agent’s: 

 Agents and environments: 
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Fig 2.1: Agents and Environments 

 Agent: 
 

An Agent is anything that can be viewed as perceiving its environment through sensors and acting 

upon that environment through actuators. 

 A human agent has eyes, ears, and other organs for sensors and hands, legs, mouth, and other 

body parts for actuators. 

 A robotic agent might have cameras and infrared range finders for sensors and various motors 

for actuators. 

 A software agent receives keystrokes, file contents, and network packets as sensory inputs and 

acts on the environment by displaying on the screen, writing files, and sending network 

packets. 

 
 Percept: 

We use the term percept to refer to the agent's perceptual inputs at any given instant. 

 

 
 Percept Sequence: 

An agent's percept sequence is the complete history of everything the agent has ever perceived. 

 

 
 Agent function: 

Mathematically speaking, we say that an agent's behavior is described by the agent function that maps 

any given percept sequence to an action. 
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 Agent program 

Internally, the agent function for an artificial agent will be implemented by an agent program. It is 

important to keep these two ideas distinct. The agent function is an abstract mathematical description; 

the agent program is a concrete implementation, running on the agent architecture. 

To illustrate these ideas, we will use a very simple example-the vacuum-cleaner world shown in Fig 

2.1.5. This particular world has just two locations: squares A and B. The vacuum agent perceives 

which square it is in and whether there is dirt in the square. It can choose to move left, move right, 

suck up the dirt, or do nothing. One very simple agent function is the following: if the current square 

is dirty, then suck, otherwise move to the other square. A partial tabulation of this agent function is 

shown in Fig 2.1.6. 

 

 

 

 
Fig 2.1.5: A vacuum-cleaner world with just two locations. 

 Agent function 
 
 

Percept Sequence Action 

[A, Clean] Right 

[A, Dirty] Suck 

[B, Clean] Left 

[B, Dirty] Suck 

[A, Clean], [A, Clean] Right 
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[A, Clean], [A, Dirty] Suck 

…  

Fig 2.1.6: Partial tabulation of a simple agent function for the example: vacuum-cleaner world shown 

in the Fig 2.1.5 

 

 

 
Fig 2.1.6(i): The REFLEX-VACCUM-AGENT program is invoked for each new percept (location, status) 

and returns an action each time 

Strategies of Solving Tic-Tac-Toe Game Playing 

Tic-Tac-Toe Game Playing: 

Tic-Tac-Toe is a simple and yet an interesting board game. Researchers have used various approaches to 

study the Tic-Tac-Toe game. For example, Fok and Ong and Grim et al. have used artificial neural 

network based strategies to play it. Citrenbaum and Yakowitz discuss games like Go-Moku, Hex and 

Bridg-It which share some similarities with Tic-Tac-Toe. 
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Fig 1. 

A Formal Definition of the Game: 

The board used to play the Tic-Tac-Toe game consists of 9 cells laid out in the form of a 3x3 

matrix (Fig. 1). The game is played by 2 players and either of them can start. Each of the two 

players is assigned a unique symbol (generally 0 and X). Each player alternately gets a turn to make 

a move. Making a move is compulsory and cannot be deferred. In each move a player places the 

symbol assigned to him/her in a hitherto blank cell. 

Let a track be defined as any row, column or diagonal on the board. Since the board is a 

square matrix with 9 cells, all rows, columns and diagonals have exactly 3 cells. It can be easily 

observed that there are 3 rows, 3 columns and 2 diagonals, and hence a total of 8 tracks on the 

board (Fig. 1). The goal of the game is to fill all the three cells of any track on the board with the 

symbol assigned to one before the opponent does the same with the symbol assigned to 

him/her. At any point of the game, if there exists a track whose all three cells have been 

marked by the same symbol, then the player to whom that symbol have been   assigned   wins 

and the game   terminates. If there exist no track whose cells have been marked by the same 

symbol when there is no more blank cell on the board then the game is drawn. 

Let the priority of a cell be defined as the number of tracks passing through it. The priorities of the 

nine cells on the board according to   this definition are tabulated in Table 1. Alternatively, 

let the priority of a track be defined as the sum of the priorities of its three cells. The priorities of 

the eight tracks on the board according to this definition are tabulated in Table 2. The prioritization 

of the cells and the tracks lays the foundation of the heuristics to be used in this study. These 

heuristics are somewhat similar to those proposed by Rich and Knight. 
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Strategy 1: 

Algorithm: 

1. View the vector as a ternary number. Convert it to a decimal number. 

2. Use the computed number as an index into Move-Table and access the vector stored 

there. 

3. Set the new board to that vector. 

Procedure: 

1) Elements of vector: 

0: Empty 

1: X 

2: O 

→ the vector is a ternary number 

2) Store inside the program a move-table (lookuptable): 

a) Elements in the table: 19683 (39) 

b) Element = A vector which describes the most suitable move from the 
 

Comments: 

1. A lot of space to store the Move-Table. 

2. A lot of work to specify all the entries in the Move-Table. 
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3. Difficult to extend 

 
Explanation of Strategy 2 of solving Tic-tac-toe problem 

Stratergy 2: 

Data Structure: 

1) Use vector, called board, as Solution 1 

2) However, elements of the vector: 

2: Empty 

3: X 

5: O 

3) Turn of move: indexed by integer 

1,2,3, etc 

Function Library: 

1. Make2: 

a) Return a location on a game-board. 

IF (board[5] = 2) 

RETURN 5; //the center cell. 

ELSE 

RETURN any cell that is not at the board’s corner; 

// (cell: 2,4,6,8) 

b) Let P represent for X or O 

c) can_win(P) : 

P has filled already at least two cells on a straight line (horizontal, vertical, or 

diagonal) 

d) cannot_win(P) = NOT(can_win(P)) 

2. Posswin(P): 

IF (cannot_win(P)) 

RETURN 0; 

ELSE 

RETURN index to the empty cell on the line of 

can_win(P) 
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                         Let odd numbers are turns of X  

                Let even numbers are turns of O 

3. Go(n): make a move 

Algorithm: 

1. Turn = 1: (X moves) 

Go(1) //make a move at the left-top cell 

2. Turn = 2: (O moves) 

IF board[5] is empty THEN 

Go(5) 

ELSE 

Go(1) 

3. Turn = 3: (X moves) 

IF board[9] is empty THEN 

Go(9) 

ELSE 

Go(3). 

4. Turn = 4: (O moves) 

IF Posswin (X) <> 0 THEN 

Go (Posswin (X)) 

//Prevent the opponent to win 

ELSE Go (Make2) 

5. Turn = 5: (X moves) 

IF Posswin(X) <> 0 THEN 

Go(Posswin(X)) 

//Win for X. 

ELSE IF Posswin(O) <> THEN 

Go(Posswin(O)) 

//Prevent the opponent to win 

ELSE IF board[7] is empty THEN 

Go(7) 

ELSE Go(3). 
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Comments: 

 
move. 

 

1. Not efficient in time, as it has to check several conditions before making each 

 
2. Easier to understand the program’s strategy. 

3. Hard to generalize. 
 

 

Introduction to Problem Solving, General problem solving 

Problem solving is a process of generating solutions from observed data. 

−a problem is characterized by a set of goals, 

−a set of objects, and 

−a set of operations. 

These could be ill-defined and may evolve during problem solving. 

 
 

Searching Solutions: 

To build a system to solve a problem: 

1. Define the problem precisely 

2. Analyze the problem 

3. Isolate and represent the task knowledge that is necessary to solve the problem 

4. Choose the best problem-solving techniques and apply it to the particular problem. 

 
 

Defining the problem as State Space Search: 

The state space representation forms the basis of most of the AI methods. 

 Formulate a problem as a state space search by showing the legal problem states, the legal 

operators, and the initial and goal states. 

 A state is defined by the specification of the values of all attributes of interest in the world 

 An operator changes one state into the other; it has a precondition which is the value of 

certain attributes prior to the application of the operator, and a set of effects, which are the 

attributes altered by the operator 

 The initial state is where you start 

 The goal state is the partial description of the solution 

            Formal Description of the problem: 

1. Define a state space that contains all the possible configurations of the relevant objects. 
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2. Specify one or more states within that space that describe possible situations from which the 

problem solving process may start ( initial state) 

3. Specify one or more states that would be acceptable as solutions to the problem. ( goal 

states) 

Specify a set of rules that describe the actions (operations) available 

State-Space Problem Formulation: 

 

Example: A problem is defined by four items: 

1. initial state e.g., "at Arad“ 

2. actions or successor function : S(x) = set of action–state pairs 

e.g., S(Arad) = {<Arad  Zerind, Zerind>, … } 

3. goal test (or set of goal states) 

e.g., x = "at Bucharest”, Checkmate(x) 

4. path cost (additive) 

e.g., sum of distances, number of actions executed, etc. 

c(x,a,y) is the step cost, assumed to be ≥ 0 

A solution is a sequence of actions leading from the initial state to a goal state 
 

 

 

 

Example: 8-queens problem 

 

1. Initial State: Any arrangement of 0 to 8 queens on board. 
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2. Operators: add a queen to any square. 

3. Goal Test: 8 queens on board, none attacked. 

4. Path cost: not applicable or Zero (because only the final state counts, search cost 

might be of interest). 

State Spaces versus Search Trees: 

 State Space 

o Set of valid states for a problem 

o Linked by operators 

o e.g., 20 valid states (cities) in the Romanian travel problem 

 Search Tree 

– Root node = initial state 

– Child nodes = states that can be visited from parent 

– Note that the depth of the tree can be infinite 

• E.g., via repeated states 

– Partial search tree 

• Portion of tree that has been expanded so far 

– Fringe 

• Leaves of partial search tree, candidates for expansion 

Search trees = data structure to search state-space 

 
Properties of Search Algorithms 

 

Which search algorithm one should use will generally depend on the problem domain. 

There are four important factors to consider: 

 
1. Completeness – Is a solution guaranteed to be found if at least one solution exists? 

 
 

2. Optimality – Is the solution found guaranteed to be the best (or lowest cost) solution if there 

exists more than one solution? 

 
3. Time Complexity – The upper bound on the time required to find a solution, as a function of the 

complexity of the problem. 
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4. Space Complexity – The upper bound on the storage space (memory) required at any point 

during the search, as a function of the complexity of the problem. 

 

 
General problem solving, Water-jug problem, 8-puzzle problem 

General Problem Solver: 

The General Problem Solver (GPS) was the first useful AI program, written by Simon, Shaw, and 

Newell in 1959. As the name implies, it was intended to solve nearly any problem. 

Newell and Simon defined each problem as a space. At one end of the space is the starting point; on 

the other side is the goal. The problem-solving procedure itself is conceived as a set of operations 

to cross that space, to get from the starting point to the goal state, one step at a time. 

The General Problem Solver, the program tests various actions (which Newell and Simon called 

operators) to see which will take it closer to the goal state. An operator is any activity that changes 

the state of the system. The General Problem Solver always chooses the operation that appears to 

bring it closer to its goal. 

Example: Water Jug Problem 
 

Consider the following problem: 

 
A Water Jug Problem: You are given two jugs, a 4-gallon one and a 3-gallon one, a 

pump which has unlimited water which you can use to fill the jug, and the ground on 

which water may be poured. Neither jug has any measuring markings on it. How can 

you get exactly 2 gallons of water in the 4-gallon jug? 

 
State Representation and Initial State : 

We will represent a state of the problem as a tuple (x, y) where x represents the amount of 

water in the 4-gallon jug and y represents the amount of water in the 3-gallon jug. Note 0 

≤x≤ 4, and 0 ≤y ≤3. Our initial state: (0, 0) 

 
Goal Predicate - state = (2, y) where 0≤ y≤ 3. 

Operators -we must defi ne a set of operators that will take us from one state to another: 
 
 

1. Fill 4-gal jug (x,y) → (4,y) 
  x < 4  
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2. Fill 3-gal jug (x,y) → (x,3) 
  y < 3  

3. Empty 4-gal jug on ground (x,y) → (0,y) 
  x > 0  

4. Empty 3-gal jug on ground (x,y) → (x,0) 

  y > 0  

5. Pour water from 3-gal jug (x,y) →! (4, y - (4 - x)) 

 to ll 4-gal jug 0 < x+y 4 and y > 0 

6. Pour water from 4-gal jug (x,y) → (x - (3-y), 3) 

 to ll 3-gal-jug 0 < x+y 3 and x > 0 

7. Pour all of water from 3-gal jug (x,y) → (x+y, 0) 

 into 4-gal jug 0 < x+y 4 and y 0 

8. Pour all of water from 4-gal jug (x,y) → (0, x+y) 

 into 3-gal jug 0 < x+y 3 and x 0 
 

Through Graph Search, the following solution is found : 
 

 
 

Gals in 4-gal jug Gals in 3-gal jug Rule Applied 

0 0   

  1. Fill 4 

4 0   

6. Pour 4 into 3 to ll 

1 3   

4. Empty 3 

1 0   

8. Pour all of 4 into 3 

0 1   

  1. Fill 4 

4 1   

6. Pour into 3 

2 3   

 

Second Solution: 
 

 

 

 

 
 

Artificial Intelligence Page 21 



DEPARTMENT OF CSE III YEAR/I SEM 
a 

 
 

 
 

Control strategies 

Control Strategies means how to decide which rule to apply next during the process of searching 

for a solution to a problem. 

 
Requirement for a good Control Strategy 

 
 

1. It should cause motion 

In water jug problem, if we apply a simple control strategy of starting each time from the 

top of rule list and choose the first applicable one, then we will never move towards 

solution. 

2. It should explore the solution space in a systematic manner 

If we choose another control strategy, let us say, choose a rule randomly from the applicable 

rules then definitely it causes motion and eventually will lead to a solution. But one may 

arrive to same state several times. This is because control strategy is not systematic. 

 

Systematic Control Strategies (Blind searches): 

 

Breadth First Search: 
 

Let us discuss these strategies using water jug problem. These may be applied to any search 

problem. 

 

Construct a tree with the initial state as its root. 

 

Generate all the offspring of the root by applying each of the applicable rules to the initial state. 
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Now for each leaf node, generate all its successors by applying all the rules that are appropriate. 

 

8 Puzzle Problem. 

 
The 8 puzzle consists of eight numbered, movable tiles set in a 3x3 frame. One cell of the frame is 

always empty thus making it possible to move an adjacent numbered tile into the empty cell. Such a 

puzzle is illustrated in following diagram. 

 

 

The program is to change the initial configuration into the goal configuration. A solution to the 

problem is an appropriate sequence of moves, such as “move tiles 5 to the right, move tile 7 to the 

left, move tile 6 to the down, etc”. 

Solution: 

 
To solve a problem using a production system, we must specify the global database the rules, and 

the control strategy. For the 8 puzzle problem that correspond to these three components. These 

elements are the problem states, moves and goal. In this problem each tile configuration is a state. 

The set of all configuration in the space of problem states or the problem space, there are only 3,  

62,880 different configurations o the 8 tiles and blank space. Once the problem states have been 

conceptually identified, we must construct a computer representation, or description of them . this 

description is then used as the database of a production system. For the 8-puzzle, a straight forward 

description is a 3X3 array of matrix of numbers. The initial global database is this description of the 

initial problem state. Virtually any kind of data structure can be used to describe states. 
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A move transforms one problem state into another state. The 8-puzzle is conveniently interpreted as 

having the following for moves. Move empty space (blank) to the left, move blank up, move blank 

to the right and move blank down,. These moves are modeled by production rules that operate on 

the state descriptions in the appropriate manner. 

The rules each have preconditions that must be satisfied by a state description in order for them to 

be applicable to that state description. Thus the precondition for the rule associated with “move 

blank up” is derived from the requirement that the blank space must not already be in the top row. 

The problem goal condition forms the basis for the termination condition of the production system. 

The control strategy repeatedly applies rules to state descriptions until a description of a goal state 

is produced. It also keeps track of rules that have been applied so that it can compose them into 

sequence representing the problem solution. A solution to the 8-puzzle problem is given in the 

following figure. 

Example:- Depth – First – Search traversal and Breadth - First - Search traversal 

for 8 – puzzle problem is shown in following diagrams. 
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Exhaustive Searches, BFS and DFS 

 
Search is the systematic examination of states to find path from the start/root state to the goal state. 

 
Many traditional search algorithms are used in AI applications. For complex problems, the 

traditional algorithms are unable to find the solution within some practical time and space limits. 

Consequently, many special techniques are developed; using heuristic functions. The algorithms 

that use heuristic functions are called heuristic algorithms. Heuristic algorithms are not really 

intelligent; they appear to be intelligent because they achieve better performance. 

Heuristic algorithms aremore efficient because they take advantage of feedback from the data to 

direct the search path. 

Uninformed search 

 
Also called blind, exhaustive or brute-force search, uses no information about the problem to guide 

the search and therefore may not be very efficient. 

Informed Search: 

 
Also called heuristic or intelligent search, uses information about the problem to guide the search, 

usually guesses the distance to a goal state and therefore efficient, but the search may not be always 

possible. 
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Uninformed Search Methods: 

 
 

Breadth- First -Search: 

Consider the state space of a problem that takes the form of a tree. Now, if we search the goal along 

each breadth of the tree, starting from the root and continuing up to the largest depth, we call it 

breadth first search. 

 
• Algorithm: 

1. Create a variable called NODE-LIST and set it to initial state 

2. Until a goal state is found or NODE-LIST is empty do 

a. Remove the first element from NODE-LIST and call it E. If NODE-LIST 

was empty, quit 

b. For each way that each rule can match the state described in E do: 

i. Apply the rule to generate a new state 

ii. If the new state is a goal state, quit and return this state 

iii. Otherwise, add the new state to the end of NODE-LIST 

BFS illustrated: 

Step 1: Initially fringe contains only one node corresponding to the source state A. 

 

Figure 1 

FRINGE: A 
 

Step 2: A is removed from fringe. The node is expanded, and its children B and C are generated. 

They are placed at the back of fringe. 
 
 

 

 

 

 

 

 

Artificial Intelligence Page 26 



DEPARTMENT OF CSE III YEAR/I SEM 
a 

 

 
 

Figure 2 

FRINGE: B C 
 

Step 3: Node B is removed from fringe and is expanded. Its children D, E are generated and put at 

the back of fringe. 

Figure 3 

FRINGE: C D E 
 

Step 4: Node C is removed from fringe and is expanded. Its children D and G are added to the back 

of fringe. 

Figure 4 

FRINGE: D E D G 
 

Step 5: Node D is removed from fringe. Its children C and F are generated and added to the back of 

fringe. 
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Figure 5 

FRINGE: E D G C F 
 

Step 6: Node E is removed from fringe. It has no children. 

 

Figure 6 

FRINGE: D G C F 
 

Step 7: D is expanded; B and F are put in OPEN. 

Figure 7 

FRINGE: G C F B F 

Step 8: G is selected for expansion. It is found to be a goal node. So the algorithm returns the path 

A C G by following the parent pointers of the node corresponding to G. The algorithm terminates. 

Breadth first search is: 

 One of the simplest search strategies 

 Complete. If there is a solution, BFS is guaranteed to find it. 

 If there are multiple solutions, then a minimal solution will be found 

 The algorithm is optimal (i.e., admissible) if  all operators have  the same  cost. 

Otherwise, breadth first search finds a solution with the shortest path length. 

 Time complexity : O(bd ) 

 Space complexity : O(bd ) 

 Optimality :Yes 

b - branching factor(maximum no of successors of any node), 

d – Depth of the shallowest goal node 

Maximum length of any path (m) in search space 

Advantages: Finds the path of minimal length to the goal. 
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Disadvantages: 

 Requires the generation and storage of a tree whose size is exponential the depth of the 

shallowest goal node.

 The breadth first search algorithm cannot be effectively used unless the search space is quite 

small.

 
Depth- First- Search. 

We may sometimes search the goal along the largest depth of the tree, and move up only when 

further traversal along the depth is not possible. We then attempt to find alternative offspring of the 

parent of the node (state) last visited. If we visit the nodes of a tree using the above principles to 

search the goal, the traversal made is called depth first traversal and consequently the search 

strategy is called depth first search. 

 
 

• Algorithm: 

1. Create a variable called NODE-LIST and set it to initial state 

2. Until a goal state is found or NODE-LIST is empty do 

a. Remove the first element from NODE-LIST and call it E. If NODE-LIST 

was empty, quit 

b. For each way that each rule can match the state described in E do: 

i. Apply the rule to generate a new state 

ii. If the new state is a goal state, quit and return this state 

iii. Otherwise, add the new state in front of NODE-LIST 

DFS illustrated: 
 

A State Space Graph 

Step 1: Initially fringe contains only the node for A. 
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Figure 1 

FRINGE: A 
 

Step 2: A is removed from fringe. A is expanded and its children B and C are put in front of fringe. 

 

Figure 2 

FRINGE: B C 
 

Step 3: Node B is removed from fringe, and its children D and E are pushed in front of fringe. 

Figure 3 

FRINGE: D E C 
 
 

Step 4: Node D is removed from fringe. C and F are pushed in front of fringe. 

Figure 4 

FRINGE: C F E C 
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Step 5: Node C is removed from fringe. Its child G is pushed in front of fringe. 

Figure 5 

FRINGE: G F E C 

Step 6: Node G is expanded and found to be a goal node. 
 

Figure 6 

FRINGE: G F E C 
 
 

The solution path A-B-D-C-G is returned and the algorithm terminates. 

 
 

Depth first search is: 

1. The algorithm takes exponential time. 

2. If N is the maximum depth of a node in the search space, in the worst case the algorithm 

d 

will take time O(b ). 

3. The space taken is linear in the depth of the search tree, O(bN). 

 
Note that the time taken by the algorithm is related to the maximum depth of the search tree. If the 

search tree has infinite depth, the algorithm may not terminate. This can happen if the search space 

is infinite. It can also happen if the search space contains cycles. The latter case can be handled by 

checking for cycles in the algorithm. Thus Depth First Search is not complete. 

 

 

 

Artificial Intelligence Page 31 



DEPARTMENT OF CSE III YEAR/I SEM 
a 

 

Exhaustive searches- Iterative Deeping DFS 

 
 

Description: 
 

 It is a search strategy resulting when you combine BFS and DFS, thus combining the 

advantages of each strategy, taking the completeness and optimality of BFS and the modest 

memory requirements of DFS.

 IDS works by looking for the best search depth d, thus starting with depth limit 0 and make 

a BFS and if the search failed it increase the depth limit by 1 and try a BFS again with depth 

1 and so on – first d = 0, then 1 then 2 and so on – until a depth d is reached where a goal is 

found.

Algorithm: 

 
procedure IDDFS(root) 

for depth from 0 to ∞ 

found ← DLS(root, depth) 

if found ≠ null 

return found 

 
 

procedure DLS(node, depth) 

if depth = 0 and node is a goal 

return node 

else if depth > 0 

foreach child of node 

found ← DLS(child, depth−1) 

if found ≠ null 

return found 

return null 

 
 

Performance Measure: 

o Completeness: IDS is like BFS, is complete when the branching factor b is finite. 
 

o Optimality: IDS is also like BFS optimal when the steps are of the same cost. 
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 Time Complexity:
 

o One may find that it is wasteful to generate nodes multiple times, but actually it is 

not that costly compared to BFS, that is because most of the generated nodes are 

always in the deepest level reached, consider that we are searching a binary tree and 
our depth limit reached 4, the nodes generated in last level = 24 = 16, the nodes 

generated in all nodes before last level = 20 + 21 + 22 + 23= 15 

o Imagine this scenario, we are performing IDS and the depth limit reached depth d, 

now if you remember the way IDS expands nodes, you can see that nodes at depth d 

are generated once, nodes at depth d-1 are generated 2 times, nodes at depth d-2 are 
generated 3 times and so on, until you reach depth 1 which is generated d times, we 

can view the total number of generated nodes in the worst case as: 

 N(IDS) = (b)d + (d – 1)b2 + (d – 2)b3 + …. + (2)bd-1 + (1)bd = O(bd) 

o If this search were to be done with BFS, the total number of generated nodes in the 
worst case will be like: 

 N(BFS) = b + b2 + b3 + b4 + …. bd + (bd + 1 – b) = O(bd + 1) 

o If we consider a realistic numbers, and use b = 10 and d = 5, then number of 
generated nodes in BFS and IDS will be like 

 N(IDS) = 50 + 400 + 3000 + 20000 + 100000 = 123450 

 N(BFS) = 10 + 100 + 1000 + 10000 + 100000 + 999990 = 1111100 

 BFS generates like 9 time nodes to those generated with IDS. 

 Space Complexity:
 

o IDS is like DFS in its space complexity, taking O(bd) of memory. 
 

Weblinks: 

i. https://www.youtube.com/watch?v=7QcoJjSVT38 

ii. https://mhesham.wordpress.com/tag/iterative-deepening-depth-first-search 

Conclusion: 
 

 We can conclude that IDS is a hybrid search strategy between BFS and DFS inheriting their 

advantages.

 IDS is faster than BFS and DFS.

 It is said that “IDS is the preferred uniformed search method when there is a large search 

space and the depth of the solution is not known”.

 
            Heuristic Searches: 
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A Heuristic technique helps in solving problems, even though there is no guarantee that it will 

never lead in the wrong direction. There are heuristics of every general applicability as well as 

domain specific. The strategies are general purpose heuristics. In order to use them in a specific 

domain they are coupler with some domain specific heuristics. There are two major ways in which 

domain - specific, heuristic information can be incorporated into rule-based search procedure. 

A heuristic function is a function that maps from problem state description to measures desirability, 

usually represented as number weights. The value of a heuristic function at a given node in the 

search process gives a good estimate of that node being on the desired path to solution. 

Greedy Best First Search 

 

         Greedy best-first search tries to expand the node that is closest to the goal, on the: grounds that              

this is likely to lead to a solution quickly. Thus, it evaluates nodes by using just the heuristic function: 

 

 

Taking the example of Route-finding problems in Romania, the goal is to reach Bucharest starting 

from the city Arad. We need to know the straight-line distances to Bucharest from various cities as 

shown in Figure 8.1. For example, the initial state is In (Arad), and the straight line distance 

heuristic hSLD (In (Arad)) is found to be 366. Using the straight-line distance heuristic hSLD, the 

goal state can be reached faster. 

Arad 366 Mehadia 241 Hirsova 151 

Bucharest 0 Neamt 234 Urziceni 80 

Craiova 160 Oradea 380 Iasi 226 

Drobeta 242 Pitesti 100 Vaslui 199 

Eforie 161 Rimnicu Vilcea 193 Lugoj 244 

Fagaras 176 Sibiu 253 Zerind 374 

Giurgiu 77 Timisoara 329 

 

Figure 8.1: Values of hSLD-straight-line distances to B u c h a r e s t. 

The Initial State 

 

 
 

After Expanding Arad 
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After Expanding Sibiu 
 
 

 

 
After Expanding Fagaras 

 

 
 

Figure 8.2: Stages in a greedy best-first search for Bucharest using the straight-line distance heuristic 

hSLD. Nodes are labeled with their h-values. 

 

Figure 8.2 shows the progress of greedy best-first search using hSLD to find a path from Arad to 

Bucharest. The first node to be expanded from Arad will be Sibiu, because it is closer to Bucharest 

than either Zerind or Timisoara. The next node to be expanded will be Fagaras, because it is 

closest. 

Fagaras in turn generates Bucharest, which is the goal. 
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Evaluation Criterion of Greedy Search 

 

 Complete: NO [can get stuck in loops, e.g., Complete in finite space with repeated- 

state checking ] 

 Time Complexity: O (bm) [but a good heuristic can give dramatic improvement] 

 Space Complexity: O (bm) [keeps all nodes in memory] 

 Optimal: NO 

 
Greedy best-first search is not optimal, and it is incomplete. The worst-case time and space 

complexity is O (bm), where m is the maximum depth of the search space. 

 
 

HILL CLIMBING PROCEDURE: 

 

Hill Climbing Algorithm 
 

We will assume we are trying to maximize a function. That is, we are trying to find a point in the 

search space that is better than all the others. And by "better" we mean that the evaluation is higher. 

We might also say that the solution is of better quality than all the others. 

The idea behind hill climbing is as follows. 
 

1. Pick a random point in the search space. 

2. Consider all the neighbors of the current state. 

3. Choose the neighbor with the best quality and move to that state. 

4. Repeat 2 thru 4 until all the neighboring states are of lower quality. 

5. Return the current state as the solution state. 

We can also present this algorithm as follows (it is taken from the AIMA book (Russell, 1995) and 

follows the conventions we have been using on this course when looking at blind and heuristic 

searches). 
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             Algorithm: 

Function HILL-CLIMBING(Problem) returns a solution state 

Inputs: Problem, problem 

Local variables: Current, a node 

Next, a node 

Current = MAKE-NODE(INITIAL-STATE[Problem]) 

Loop do 

Next = a highest-valued successor of Current 

If VALUE[Next] < VALUE[Current] then return Current 

Current = Next 

End 

 

 
You should note that this algorithm does not maintain a search tree. It only returns a final solution. 

Also, if two neighbors have the same evaluation and they are both the best quality, then the 

algorithm will choose between them at random. 

Problems with Hill Climbing 
 

The main problem with hill climbing (which is also sometimes called gradient descent) is that we 

are not guaranteed to find the best solution. In fact, we are not offered any guarantees about the 

solution. It could be abysmally bad. 

You can see that we will eventually reach a state that has no better neighbours but there are better 

solutions elsewhere in the search space. The problem we have just described is called a local 

maxima. 

Simulated annealing search 

A hill-climbing algorithm that never makes “downhill” moves towards states with lower value (or 

higher cost) is guaranteed to be incomplete, because it can stuck on a local maximum. In contrast, a 

purely random walk –that is, moving to a successor chosen uniformly at random from the set of 

successors – is complete, but extremely inefficient. Simulated annealing is an algorithm that 

combines hill-climbing with a random walk in some way that yields both efficiency and 

completeness. 

Figure 10.7 shows simulated annealing algorithm. It is quite similar to hill climbing. Instead of 

picking the best move, however, it picks the random move. If the move improves the situation, it is 
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always accepted. Otherwise, the algorithm accepts the move with some probability less than 1. The 

probability decreases exponentially with the “badness” of the move – the amount E by which the 

evaluation is worsened. The probability also decreases as the "temperature" T goes down: "bad 

moves are more likely to be allowed at the start when temperature is high, and they become more 

unlikely as T decreases. One can prove that if the schedule lowers T slowly enough, the algorithm 

will find a global optimum with probability approaching 1. 

Simulated annealing was first used extensively to solve VLSI layout problems. It has been applied 

widely to factory scheduling and other large-scale optimization tasks. 

 

           LOCAL SEARCH IN CONTINUOUS SPACES 

 

 We have considered algorithms that work only in discrete environments, but real-world 

environment are continuous. 

 Local search amounts to maximizing a continuous objective function in a multi-dimensional 

vector space. 

 This is hard to do in general. 

 Can immediately retreat 

 Discretize the space near each state 
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 Apply a discrete local search strategy (e.g., stochastic hill climbing, simulated 

annealing) 

 Often resists a closed-form solution 

 Fake up an empirical gradient 

 Amounts to greedy hill climbing in discretized state space 

 Can employ Newton-Raphson Method to find maxima. 

 Continuous problems have similar problems: plateaus, ridges, local maxima, etc. 

 

 
Best First Search: 

 

 A combination of depth first and breadth first searches. 

 Depth first is good because a solution can be found without computing all nodes and 

breadth first is good because it does not get trapped in dead ends. 

 The best first search allows us to switch between paths thus gaining the benefit of both 

approaches. At each step the most promising node is chosen. If one of the nodes chosen 

generates nodes that are less promising it is possible to choose another at the same level and 

in effect the search changes from depth to breadth. If on analysis these are no better than 

this previously unexpanded node and branch is not forgotten and the search method reverts 

to the 

 

OPEN is a priorityqueue of nodes that have been evaluated by the heuristic function but which 

have not yet been expanded into successors. The most promising nodes are at the front. 

 

CLOSED are nodes that have already been generated and these nodes must be stored because a 

graph is being used in preference to a tree. 

 

Algorithm: 

 
1. Start with OPEN holding the initial state 

2. Until a goal is found or there are no nodes left on open do. 

 
 Pick the best node on OPEN 

 Generate its successors 

 For each successor Do 
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• If it has not been generated before ,evaluate it ,add it to OPEN and record its 

parent 

• If it has been generated before change the parent if this new path is better 

and in that case update the cost of getting to any successor nodes. 

 

3. If a goal is found or no more nodes left in OPEN, quit, else return to 2. 

          Example: 
 

 

1. It is not optimal. 

2. It is incomplete because it can start down an infinite path and never return to try other 

possibilities. 
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3. The worst-case time complexity for greedy search is O (bm), where m is the maximum depth 

of the search space. 

4. Because greedy search retains all nodes in memory, its space complexity is the same as its 

time complexity 
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             A* Algorithm 

 
The Best First algorithm is a simplified form of the A* algorithm. 

 
The A* search algorithm (pronounced "Ay-star") is a tree search algorithm that finds a path from 

a given initial node to a given goal node (or one passing a given goal test). It employs a "heuristic 

estimate" which ranks each node by an estimate of the best route that goes through that node. It 

visits the nodes in order of this heuristic estimate. 

Similar to greedy best-first search but is more accurate because A* takes into account the nodes 

that have already been traversed. 

 

From A* we note that f = g + h where 

 
g is a measure of the distance/cost to go from the initial node to the current node 

 
h is an estimate of the distance/cost to solution from the current node. 

 
Thus f is an estimate of how long it takes to go from the initial node to the solution 

 
Algorithm: 

 
1. Initialize : Set OPEN = (S); CLOSED = ( ) 

g(s)= 0, f(s)=h(s) 

2. Fail : If OPEN = ( ), Terminate and fail. 

3. Select : select the minimum cost state, n, from OPEN, 

save n in CLOSED 

4. Terminate : If n €G, Terminate with success and return f(n) 

5. Expand : for each successor, m, of n 

a) If m € [OPEN U CLOSED] 

Set g(m) = g(n) + c(n , m) 

Set f(m) = g(m) + h(m) 

Insert m in OPEN 

b) If m € [OPEN U CLOSED] 

Set g(m) = min { g(m) , g(n) + c(n , m)} 
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Description: 

Set f(m) = g(m) + h(m) 

If f(m) has decreased and m € CLOSED 

Move m to OPEN. 

 

 A* begins at a selected node. Applied to this node is the "cost" of entering this node 

(usually zero for the initial node). A* then estimates the distance to the goal node from the 

current node. This estimate and the cost added together are the heuristic which is assigned 

to the path leading to this node. The node is then added to a priority queue, often called 

"open". 

 The algorithm then removes the next node from the priority queue (because of the way a 

priority queue works, the node removed will have the lowest heuristic). If the queue is 

empty, there is no path from the initial node to the goal node and the algorithm stops. If the 

node is the goal node, A* constructs and outputs the successful path and stops. 

 If the node is not the goal node, new nodes are created for all admissible adjoining nodes; 

the exact way of doing this depends on the problem at hand. For each successive node, A* 

calculates the "cost" of entering the node and saves it with the node. This cost is calculated 

from the cumulative sum of costs stored with its ancestors, plus the cost of the operation 

which reached this new node. 

 The algorithm also maintains a 'closed' list of nodes whose adjoining nodes have been 

checked. If a newly generated node is already in this list with an equal or lower cost, no 

further processing is done on that node or with the path associated with it. If a node in the 

closed list matches the new one, but has been stored with a higher cost, it is removed from 

the closed list, and processing continues on the new node. 

 Next, an estimate of the new node's distance to the goal is added to the cost to form the 

heuristic for that node. This is then added to the 'open' priority queue, unless an identical 

node is found there. 

 Once the above three steps have been repeated for each new adjoining node, the original 

node taken from the priority queue is added to the 'closed' list. The next node is then popped 

from the priority queue and the process is repeated 
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The heuristic costs from each city to Bucharest: 
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A* search properties: 

 The algorithm A* is admissible. This means that provided a solution exists, 

the first solution found by A* is an optimal solution. A* is admissible under 

the following conditions: 

 Heuristic function: for every node n , h(n) ≤ h*(n) . 
 

 A* is also complete. 
 

 A* is optimally efficient for a given heuristic. 
 

 A* is much more efficient that uninformed search. 
 

Iterative Deeping A* Algorithm: 

Algorithm: 

Let L be the list of visited but not expanded node, and 

C the maximum depth 

1) Let C=0 

2) Initialize Lto the initial state (only) 

3) If List empty increase C and goto 2), 

else 

extract a node n  from the front of L 

4) If n is a goal node, 

SUCCEED and return the path from the initial state to n 

5) Remove n from L. If the level is smaller than C, insert at the front of L all the children n' 

of n with f(n') ≤ C 

6) Goto 3) 
 

 IDA* is complete & optimal Space usage is linear in the depth of solution. Each iteration is 

depth first search, and thus it does not require a priority queue. 
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 Iterative deepening A* (IDA*) eliminates the memory constraints of A* search algorithm 

without sacrificing solution optimality. 

 Each iteration of the algorithm is a depth-first search that keeps track of the cost, f(n) = g(n) 

+ h(n), of each node generated. 
 

 As soon as a node is generated whose cost exceeds a threshold for that iteration, its path is 

cut off, and the search backtracks before continuing. 

 The cost threshold is initialized to the heuristic estimate of the initial state, and in each 

successive iteration is increased to the total cost of the lowest-cost node that was pruned 

during the previous iteration. 

 The algorithm terminates when a goal state is reached whose total cost dees not exceed the 

current threshold. 
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UNIT II 

Constraint Satisfaction Problems 

Refer: 
 

https://www.cnblogs.com/RDaneelOlivaw/p/8072603.html 
 

Sometimes a problem is not embedded in a long set of action sequences but requires picking the 

best option from available choices. A good general-purpose problem solving technique is to list the 

constraints of a situation (either negative constraints, like limitations, or positive elements that you 

want in the final solution). Then pick the choice that satisfies most of the constraints. 

Formally speaking, a constraint satisfaction problem (or CSP) is defined by a set of variables, 

X1;X2; : : : ;Xn, and a set of constraints, C1;C2; : : : ;Cm. Each variable Xi has a nonempty domain 

Di of possible values. Each constraint Ci involves some subset of t variables and specifies the 

allowable combinations of values for that subset. A state of the problem is defined by an 

assignment of values to some or all of the variables, {Xi = vi;Xj = vj ; : : :} An assignment that 

does not violate any constraints is called a consistent or legal assignment. A complete assignment is 

one in which every variable is mentioned, and a solution to a CSP is a complete assignment that 

satisfies all the constraints. Some CSPs also require a solution that maximizes an objectivefunction. 

CSP can be given an incremental formulation as a standard search problem as follows: 
 

1. Initial state: the empty assignment fg, in which all variables are unassigned. 
 

2. Successor function: a value can be assigned to any unassigned variable, provided that it does 

not conflict with previously assigned variables. 

3. Goal test: the current assignment is complete. 
 

4. Path cost: a constant cost for every step 
 

Examples: 
 

1. The best-known category of continuous-domain CSPs is that of 

linear programming problems, where constraints must be linear 

inequalities forming a convex region. 

2. Crypt arithmetic puzzles. 
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Example: The map coloring problem. 
 

The task of coloring each region red, green or blue in such a way that no neighboring 

regions have the same color. 

 

We are given the task of coloring each region red, green, or blue in such a way that the 

neighboring regions must not have the same color. 

 

To formulate this as CSP, we define the variable to be the regions: WA, NT, Q, NSW, V, 

SA, and T. The domain of each variable is the set {red, green, blue}. The constraints 

require neighboring regions to have distinct colors: for example, the allowable 

combinations for WA and NT are the pairs 

{(red,green),(red,blue),(green,red),(green,blue),(blue,red),(blue,green)}. (The constraint 

can also be represented as the inequality WA ≠ NT). There are many possible solutions, 

such as {WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = 

red}.Map of Australia showing each of its states and territories 
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Constraint Graph: A CSP is usually represented as an undirected graph, called constraint 

graph where the nodes are the variables and the edges are the binary constraints. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The map-coloring problem represented as a constraint graph. 

CSP can be viewed as a standard search problem as follows: 

> Initial state : the empty assignment {},in which all variables are 

unassigned. 

> Successor function: a value can be assigned to any unassigned variable, provided that 

it does not conflict with previously assigned variables. 

> Goal test: the current assignment is complete. 

> Path cost: a constant cost(E.g.,1) for every step. 

 
 

Game Playing 

Adversarial search, or game-tree search, is a technique for analyzing an adversarial game in order 

to try to determine who can win the game and what moves the players should make in order to win. 

Adversarial search is one of the oldest topics in Artificial Intelligence. The original ideas for 

adversarial search were developed by Shannon in 1950 and independently by Turing in 1951, in the 

context of the game of chess—and their ideas still form the basis for the techniques used today. 

2- Person Games: 

o Players: We call them Max and Min. 

o Initial State: Includes board position and whose turn it is. 

o Operators: These correspond to legal moves. 
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o Terminal Test: A test applied to a board position which determines whether the 

game is over. In chess, for example, this would be a checkmate or stalemate 

situation. 

o Utility Function: A function which assigns a numeric value to a terminal state. For 

example, in chess the outcome is win (+1), lose (-1) or draw (0). Note that by 

convention, we always measure utility relative to Max. 

 
MiniMax Algorithm: 

1. Generate the whole game tree. 

2. Apply the utility function to leaf nodes to get their values. 

3. Use the utility of nodes at level n to derive the utility of nodes at level n-1. 

4. Continue backing up values towards the root (one layer at a time). 

5. Eventually the backed up values reach the top of the tree, at which point Max chooses the 

move that yields the highest value. This is called the minimax decision because it 

maximises the utility for Max on the assumption that Min will play perfectly to minimise it. 
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             Example: 

Properties of minimax: 

 
 

 Complete : Yes (if tree is finite) 

 Optimal : Yes (against an optimal opponent) 

 Time complexity : O(bm) 

 Space complexity : O(bm) (depth-first exploration) 

 For chess, b ≈ 35, m ≈100 for "reasonable" games 

 exact solution completely infeasible. 

Limitations 
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– Not always feasible to traverse entire tree 

– Time limitations 

 

 
Alpha-beta pruning algorithm: 

 

• Pruning: eliminating a branch of the search tree from consideration without exhaustive 

examination of each node 

• - Pruning: the basic idea is to prune portions of the search tree that cannot improve the 

utility value of the max or min node, by just considering the values of nodes seen so far. 

• Alpha-beta pruning is used on top of minimax search to detect paths that do not need to be 

explored. The intuition is: 

• The MAX player is always trying to maximize the score. Call this . 

• The MIN player is always trying to minimize the score. Call this  . 

• Alpha cutoff: Given a Max node n, cutoff the search below n (i.e., don't generate or 

examine any more of n's children) if alpha(n) >= beta(n) 

(alpha increases and passes beta from below) 

• Beta cutoff.: Given a Min node n, cutoff the search below n (i.e., don't generate or examine 

any more of n's children) if beta(n) <= alpha(n) 

(beta decreases and passes alpha from above) 

• Carry alpha and beta values down during search Pruning occurs whenever alpha >= beta 
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Algorithm: 
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Example: 

 
 

1) Setup phase: Assign to each left-most (or right-most) internal node of the tree, 

variables: alpha = -infinity, beta = +infinity 

 

 

 
 

2) Look at first computed final configuration value. It’s a 3. Parent is a min node, so 

set the beta (min) value to 3. 
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3) Look at next value, 5.    Since parent is a min node, we want the minimum of 

3 and 5 which is 3. Parent min node is done – fill alpha (max) value of its parent max 

node. Always set alpha for max nodes and beta for min nodes. Copy the state of the max 

parent node into the second unevaluated min child. 

 

 
 

4) Look at next value, 2. Since parent node is min with b=+inf, 2 is smaller, change b. 
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5) Now, the min parent node has a max value of 3 and min value of 2. The value of the 

2nd child does not matter. If it is >2, 2 will be selected for min node. If it is <2, it will be 

selected for min node, but since it is <3 it will not get selected for the parent max node. Thus, 

we prune the right subtree of the min node. Propagate max value up the tree. 

 

6) Max node is now done and we can set the beta value of its parent and propagate node 

state to sibling subtree’s left-most path. 
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7) The next node is 10. 10 is not smaller than 3, so state of parent does not change. We still 

have to look at the 2nd child since alpha is still –inf. 

 

 
 

8) The next node is 4. Smallest value goes to the parent min node. Min subtree is done, so the 

parent max node gets the alpha (max) value from the child. Note that if the max node had a 

2nd subtree, we can prune it since a>b. 
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9) Continue propagating value up the tree, modifying the corresponding alpha/beta values. 

Also propagate the state of root node down the left-most path of the right subtree. 

 

 
 

10) Next value is a 2. We set the beta (min) value of the min parent to 2. Since no other 

children exist, we propagate the value up the tree. 
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11) We have a value for the 3rd level max node, now we can modify the beta (min) value of the 

min parent to 2. Now, we have a situation that a>b and thus the value of the rightmost 

subtree of the min node does not matter, so we prune the whole subtree. 

 

 

12) Finally, no more nodes remain, we propagate values up the tree. The root has a value of 3 

that comes from the left-most child.   Thus, the player should choose the left-most child’s 

move in order to maximize his/her winnings. As you can see, the result is the same as with the 

mini-max example, but we did not visit all nodes of the tree. 
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UNIT III 
 

Knowledge Based Agents A knowledge-based agent needs a KB and an inference mechanism. 

It operates by storing sentences in its knowledge base, inferring new sentences with the 

inference mechanism, and using them to deduce which actions to take The interpretation of a 

sentence is the fact to which it refers. 
 

 

 

 

 

 

 
 

Knowledge base = set of sentences in a formal language Declarative approach to building an 

agent (or other system): Tell it what it needs toknow - Thenitcan Askitselfwhattodo— 

answersshouldfollowfromtheKB Agents can be viewed at the knowledge leveli.e., what they 

know, regardless of howimplemented or at the implementation leveli.e.,data structuresinKBand 

algorithmsthatmanipulatethem. The Wumpus World: 

 

 
A variety of "worlds" are being used as examples for Knowledge Representation, Reasoning, 

and Planning. Among them the Vacuum World, the Block World, and the Wumpus World. The 

Wumpus World was introduced by Genesereth, and is discussed in Russell-Norvig. The 

Wumpus World is a simple world (as is the Block World) for which to represent knowledge and 

to reason. It is a cave with a number of rooms, represented as a 4x4 square 
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Rules of the Wumpus World The neighborhood of a node consists of the four squares north, 

south, east, and west of the given square. In a square the agent gets a vector of percepts, with 

components Stench, Breeze, Glitter, Bump, Scream For example [Stench, None, Glitter, None, 

None] Stench is perceived at a square iff the wumpus is at this square or in its neighborhood. 

Breeze is perceived at a square iff a pit is in the neighborhood of this square. Glitter is 

perceived at a square iff gold is in this square  Bump is perceived at a square iff the agent 

goes Forward into a wall Scream is perceived at a square iff the wumpus is killed anywhere 

in the cave An agent can do the following actions (one at a time): Turn (Right), Turn (Left), 

Forward, Shoot, Grab, Release, Climb The agent can go forward in the direction it is 

currently facing, or Turn Right, or Turn Left. Going forward into a wall will generate a Bump 

percept.  The agent has a single arrow that it can shoot. It will go straight in the direction 

faced by the agent until it hits (and kills) the wumpus, or hits (and is absorbed by) a wall. The 

agent can grab a portable object at the current square or it can Release an object that it is 

holding.  The agent can climb out of the cave if at the Start square.The Start square is (1,1) 

and initially the agent is facing east. The agent dies if it is in the same square asthe wumpus. 

The objective of the game is to kill the wumpus, to pick up the gold, and to climb out with it. 

Representing our Knowledge about the Wumpus World Percept(x, y) Where x must be a 

percept vector and y must be a situation. It means that at situation y theagentperceives x.For 

convenience we introduce the following definitions: Percept([Stench,y,z,w,v],t) = > Stench(t) 

Percept([x,Breeze,z,w,v],t) = > Breeze(t)  Percept([x,y,Glitter,w,v],t) = > AtGold(t) 

Holding(x, y) 
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Where x is an object and y is a situation. It means that the agent is holding the object x in 

situation y. Action(x, y) Where x must be an action (i.e. Turn (Right), Turn (Left), Forward,) 

and y must be a situation. It means that at situation y the agent takes action x. At(x,y,z) Where x 

is an object, y is a Location, i.e. a pair [u,v] with u and v in {1, 2, 3, 4}, and z is a situation. It 

means that the agent x in situation z is at location y. Present(x,s) Means that object x is in the 

current room in the situation s. Result(x, y) It means that the result of applying action x to the 

situation y is the situation Result(x,y).Notethat Result(x,y) is a term, not a statement. For 

example we can say Result(Forward, S0) = S1 Result(Turn(Right),S1) = S2 These 

definitions could be made more general. Since in the Wumpus World there is a single agent, 

there is no reason for us to make predicates and functions relative to a specific agent. In 

other"worlds" we should change things appropriately. 

Validity And Satisfiability 

A sentence is valid 

if it is true in all models, e.g.,True,A∨¬A, A⇒A,(A𝖠(A⇒B)) ⇒B Validity is connected to 

inference via the Deduction Theorem: KB |= αif and onlyif(KB⇒α) isvalid 

Asentenceissatisfiableifitistrue      insome      model      e.g.,      A∨B, C Asentence 

isunsatisfiableifitistrueinnomodels e.g., A 𝖠¬A Satisfiability is connected to inference via the 

following: KB|=α iff(KB𝖠¬α)isunsatisfiable i.e., prove α by reductionandabsurdum 

Proof Methods 

 
Proof methods divide into (roughly)two kinds: 

 
Application of inference rules – Legitimate(sound)generationofnewsentencesfromold – 

Proof=asequenceofinferenceruleapplicationscanuseinferencerulesasoperatorsinastand ardsearch 

algorithm – Typicallyrequiretranslationofsentencesintoanormalform Model checking – 

Truthtableenumeration(alwaysexponentialinn) – Improvedbacktracking,e.g.,Davis–Putnam– 

Loge Mann–Loveland – Heuristic searchinmodelspace(soundbutincomplete) e.g.,min-conflicts- 

likehillclimbingalgorithms 

 

 
Forward and Backward Chaining 
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Horn Form (restricted) KB = conjunction of Horn clauses Horn clause = – proposition 

symbol;or – (conjunctionofsymbols) ⇒ symbol Example KB: C𝖠(B ⇒ A) 𝖠 (C𝖠D ⇒ B) 

Modus Ponens (for Horn Form): complete for Horn KBs 

 

 
 

α1,...,αn,α1𝖠···𝖠α⇒ β β 

 
Canbeusedwithforwardchaining orbackwardchaining. These algorithms 

areverynaturalandruninlineartime., 

 

 
ForwardChaining 

 
Idea: If anyrulewhosepremisesaresatisfiedintheKB, additsconclusiontotheKB,untilqueryisfound 

ForwardChaining Algorithm 
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Proof of Completeness 

 
FC derives every atomic sentence that is entailed by KB 1. 

FCreachesafixedpointwherenonewatomicsentencesarederived     2. 

Considerthefinalstateasamodelm,assigningtrue/falsetosymbols 3. Every clause in the original 
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KB is true inm i. Proof:Supposeaclausea1𝖠...𝖠ak⇒bisfalsei nm Then a1𝖠. . . 𝖠akis true in m 

and b is false in m Thereforethealgorithmhasnotreachedafixedpoint ! 4. Hence m is a model 

ofKB 5. IfKB|=q,thenqistrueineverymodelofKB,includingm a. Generalidea: 

constructanymodelofKBby soundinference,checkα 

 

 
Backward Chaining 

 
Idea:workbackwardsfromthequeryq: to prove q byBC, check if q is known already, or prove by 

BC all premises of some rule concluding q Avoidloops: 

checkifnewsubgoalisalreadyonthegoalstack Avoid repeated work: check if new subgoal 1. has 

already been proved true, or 2. has alreadyfailed 
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Forward vs Backward Chaining 

 
FC is data-driven, cf. automatic, unconscious processing, 

e.g.,objectrecognition,routinedecisions Maydolotsofworkthatisirrelevanttothegoal BC is goal- 

driven, appropriate forproblem-solving, e.g., Where are my keys? How do I get into a PhD 

program? Complexity of BC can be much less than linear in size of KB 

FIRST ORDER LOGIC: 

 
PROCEDURAL LANGUAGES AND PROPOSITIONAL LOGIC: 

 
Drawbacks of Procedural Languages 

 

Programming languages (such as C++ or Java or Lisp) are by far the largest class of formal 

languages in common use. Programs themselves represent only computational processes. Data 

structures within programs can represent facts. 

For example, a program could use a 4 × 4 array to represent the contents of the wumpus world. 

Thus, the programming language statement World[2,2]← Pit is a fairly natural way to assert 

that there is a pit in square [2,2]. 

What programming languages lack is any general mechanism for deriving facts from other 

facts; each update to a data structure is done by a domain-specific procedure whose details are 

derived by the programmer from his or her own knowledge of the domain. 

A second drawback of is the lack the expressiveness required to handle partial information . 

For example data structures in programs lack the easy way to say, “There is a pit in [2,2] or 

[3,1]” or “If the wumpus is in [1,1] then he is not in [2,2].” 
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Advantages of Propositional Logic 
 

The declarative nature of propositional logic, specify that knowledge and inference are 

separate, and inference is entirely domain-independent. Propositional logic is a declarative 

language because its semantics is based on a truth relation between sentences and possible 

worlds. It also has sufficient expressive power to deal with partial information, using 

disjunction and negation. 

Propositional logic has a third COMPOSITIONALITY property that is desirable in 

representation languages, namely, compositionality. In a compositional language, the meaning 

of a sentence is a function of the meaning of its parts. For example, the meaning of “S1,4𝖠 

S1,2” is related to the meanings of “S1,4” and “S1,2. 

Drawbacks of Propositional Logic Propositional logic lacks the expressive power to 

concisely describe an environment with many objects. 

For example, we were forced to write a separate rule about breezes and pits for each square, 

such as B1,1⇔ (P1,2 ∨ P2,1) . 

In English, it seems easy enough to say, “Squares adjacent to pits are breezy.” The syntax 

and semantics of English somehow make it possible to describe the environment concisely 

SYNTAX AND SEMANTICS OF FIRST-ORDER LOGIC 

 
Models for first-order logic : 

 
The models of a logical language are the formal structures that constitute the possible worlds 

under consideration. Each model links the vocabulary of the logical sentences to elements of 

the possible world, so that the truth of any sentence can be determined. Thus, models for 

propositional logic link proposition symbols to predefined truth values. Models for first-order 

logic have objects. The domain of a model is the set of objects or domain elements it contains. 

The domain is required to be nonempty—every possible world must contain at least one object. 

A relation is just the set of tuples of objects that are related. Unary Relation: Relations 

relates to single Object Binary Relation: Relation Relates to multiple objects Certain kinds of 

relationships are best considered as functions, in that a given object must be related to exactly 

one object. 

              For Example: 
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Richard the Lionheart, King of England from 1189 to 1199; His younger brother, the evil King 

John, who ruled from 1199 to 1215;  the left legs of Richard and John; crown 

 

 

 
 

Unary Relation : John is a king Binary Relation :crown is on head of john , Richard is brother 

ofjohn The unary "left leg" function includes the following mappings: (Richard the Lionheart) 

->Richard's left leg (King John) ->Johns left Leg 

Symbols and interpretations 

 
 

Symbols are the basic syntactic elements of first-order logic. Symbols stand for objects, 

relations, and functions. 

The symbols are of three kinds:     Constant symbols which stand for objects; Example: 

John, Richard   Predicate symbols, which stand for relations;   Example:   OnHead, Person, 

King, and Crown Function symbols, which stand for functions. Example:  left leg 

Symbols will begin with uppercase letters. 

 
Interpretation The semantics must relate sentences to models in order to determine truth. For 

this to happen, we need an interpretation that specifies exactly which objects, relations and 

functions are referred to by the constant, predicate, and function symbols. 
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For Example: 
 

Richard refers to Richard the Lionheart and John refers to the evil king John.     Brother 

refers to the brotherhood relation    OnHead refers to the "on head relation that holds between 

the crown and King John;    Person, King, and Crown refer to the sets of objects that are 

persons, kings, and crowns. LeftLeg refers to the "left leg" function, 

The truth of any sentence is determined by a model and an interpretation for the sentence's 

symbols. Therefore, entailment, validity, and so on are defined in terms of all possiblemodels 

and all possible interpretations. The number of domain elements in each model may be 

unbounded-for example, the domain elements may be integers or real numbers. Hence, the 

number of possible models is anbounded, as is the number of interpretations. 

Term 

 
A term is a logical expression that refers to an object. Constant symbols are therefore terms. 

Complex Terms A complex term is just a complicated kind of name. A complex term is formed 

by a function symbol followed by a parenthesized list of terms as arguments to the function 

symbol For example: "King John's left leg" Instead of using a constant symbol, we use 

LeftLeg(John). The formal semantics of terms : 

Consider a term f (tl,. . . , t,). The function symbol   frefers to some function in the model (F); 

the argument terms refer to objects in the domain (call them d1….dn); and the term as a whole 

refers to the object that is the value of the function Fapplied to dl, . . . , d,. For example,: the 

LeftLeg function symbol refers to the function “ (King John) -+ John's left leg” and John refers 

to King John, then LeftLeg(John) refers to King John's left leg. In this way, the interpretation 

fixes the referent of every term. 

Atomic sentences 

 
An atomic sentence is formed from a predicate symbol followed by a parenthesized list of 

terms: For Example:  Brother(Richard, John). 

Atomic sentences can have complex terms as arguments. For Example: Married 

(Father(Richard), Mother( John)). 

An atomic sentence is true in a given model, under a given interpretation, if the relation 

referred to by the predicate symbol holds among the objects referred to by the arguments 
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Complex sentences Complex sentences can be constructed using logical Connectives, just as in 

propositional calculus.  For Example: 

 

 

Thus, the sentence says, “For all x, if x is a king, then x is a person.” The symbol x is called a 

variable. Variables are lowercase letters. A variable is a term all by itself, and can also serve as 

the argument of a function A term with no variables is called a ground term. 

Assume we can extend the interpretation in different ways: x→ Richard the Lionheart, x→ 

King John, x→ Richard’s left leg, x→ John’s left leg, x→ the crown 

 

 
The universally quantified sentence ∀x King(x) ⇒Person(x) is true in the original model if the 

sentence King(x) ⇒Person(x) is true under each of the five extended interpretations. That is, the 

universally quantified sentence is equivalent to asserting the following five sentences: 

Richard the Lionheart is a king ⇒Richard the Lionheart is a person. King John is a king ⇒King 

John is a person. Richard’s left leg is a king ⇒Richard’s left leg is a person. John’s left leg is a 

king ⇒John’s left leg is a person. The crown is a king ⇒the crown is a person. 

Existential quantification (∃) 
 

Artificial Intelligence Page 71 



DEPARTMENT OF CSE III YEAR/I SEM 
a 

 

Universal quantification makes statements about every object. Similarly, we can make a 

statement about some object in the universe without naming it, by using an existential 

quantifier. 

“The sentence ∃x P says that P is true for at least one object x. More precisely, ∃x P is true in a 

given model if P is true in at least one extended interpretationthat assigns x to a domain 

element.” ∃x is pronounced “There exists an x such that . . .” or “For some x . . .”. 

For example, that King John has a crown on his head, we write ∃xCrown(x) 𝖠OnHead(x, John) 

Given assertions: 

Richard the Lionheart is a crown 𝖠Richard the Lionheart is on John’s head; King John is a 

crown 𝖠King John is on John’s head; Richard’s left leg is a crown 𝖠Richard’s left leg is on 

John’s head; John’s left leg is a crown 𝖠John’s left leg is on John’s head; The crown is a crown 

𝖠the crown is on John’s head. The fifth assertion is true in the model, so the original 

existentially quantified sentence is true in the model. Just as ⇒appears to be the natural 

connective to use with ∀, 𝖠is the natural connective to use with ∃. 

Nested quantifiers 

 
One can express more complex sentences using multiple quantifiers. 

 
For example, “Brothers are siblings” can be written as ∀x∀y Brother (x, y) ⇒Sibling(x, y). 

Consecutive quantifiers of the same type can be written as one quantifier with several variables. 

For example, to say that siblinghood is a symmetric relationship, 

we can write∀x, y Sibling(x, y) ⇔Sibling(y, x). 

In other cases we will have mixtures. 

 

 
 

For example: 1. “Everybody loves somebody” means that for every person, there is someone 

that person loves: ∀x∃y Loves(x, y) . 2. On the other hand, to say “There is someone who is 

loved by everyone,” we write ∃y∀x Loves(x, y) . 

Connections between ∀and ∃ 
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Universal and Existential quantifiers are actually intimately connected with each other, through 

negation. 

Example assertions: 1. “ Everyone dislikes medicine” is the same as asserting “ there does not 

exist someone who likes medicine” , and vice versa: “∀x ￢Likes(x, medicine)” is equivalent to 

“￢∃x Likes(x, medicine)”. 2. “Everyone likes ice cream” means that “ there is no one who 

does not like ice cream” : ∀xLikes(x, IceCream) is equivalent to ￢∃x ￢Likes(x, IceCream) . 

Because ∀is really a conjunction over the universe of objects and ∃is a disjunction that they 

obey De Morgan’s rules. The De Morgan rules for quantified and unquantified sentences are as 

follows: 

 

 

Equality 

 
First-order logic includes one more way to make atomic sentences, other than using a 

predicateand terms .We can use the equality symbol to signify that two terms refer to the same 

object. 

For example, 

 
“Father(John) =Henry” says that the object referred to by Father (John) and the object referred 

to by Henry are the same. 

Because an interpretation fixes the referent of any term, determining the truth of an equality 

sentence is simply a matter of seeing that the referents of the two terms are the same object.The 

equality symbol can be used to state facts about a given function.It can also be used with 

negation to insist that two terms are not the same object. 
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For example, 

 
“Richard has at least two brothers” can be written as, ∃x, y Brother (x,Richard ) 𝖠Brother 

(y,Richard ) 𝖠￢(x=y) . 

The sentence 

 

∃x, y Brother (x,Richard ) 𝖠Brother (y,Richard ) does not have the intended meaning. In 

particular, it is true only in the model where Richard has only one brother considering the 

extended interpretation in which both x and y are assigned to King John. The addition of 

￢(x=y) rules out such models. 

 

 

USING FIRST ORDER LOGIC Assertions and queries in first-order logic 

Assertions: 

Sentences are added to a knowledge base using TELL, exactly as in propositional logic. Such 

sentences are called assertions. 

For example, 

 

John is a king, TELL (KB, King (John)). Richard is a person. TELL (KB, Person (Richard)). 

All kings are persons: TELL (KB, ∀x King(x) ⇒Person(x)). 

Asking Queries: 
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We can ask questions of the knowledge base using ASK. Questions asked with ASK are called 

queries or goals. 

For example, 

 
ASK (KB, King (John)) returns true. 

 
Anyquery that is logically entailed by the knowledge base should be answered affirmatively. 

Forexample, given the two preceding assertions, the query: 

“ASK (KB, Person (John))” should also return true. 

Substitution or binding list 

We can ask quantified queries, such as ASK (KB, ∃x Person(x)) . 

 
The answer is true, but this is perhaps not as helpful as we would like. It is rather like 

answering “Can you tell me the time?” with “Yes.” 

If we want to know what value of x makes the sentence true, we will need a different function, 

ASKVARS, which we call with ASKVARS (KB, Person(x)) and which yields a stream of 

answers. 

In this case there will be two answers: {x/John} and {x/Richard}. Such an answer is called a 

substitution or binding list. 

ASKVARS is usually reserved for knowledge bases consisting solely of Horn clauses, because 

in such knowledge bases every way of making the query true will bind the variables to specific 

values. 

The kinship domain 

 
The objects in Kinship domain are people. 

 
We have two unary predicates, Male and Female. 

 
Kinship relations—parenthood, brotherhood, marriage, and so on—are represented by binary 

predicates: Parent, Sibling, Brother,Sister,Child, Daughter, Son, Spouse, Wife, Husband, 

Grandparent,Grandchild, Cousin, Aunt, and Uncle. 

We use functions for Mother and Father, because every person has exactly one of each of 

these. 
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We can represent each function and predicate, writing down what we know in termsof the 

other symbols. 

For example:- 1. one’s mother is one’s female parent: ∀m, c Mother (c)=m ⇔Female(m) 

𝖠Parent(m, c) . 

 
2. One’s husband is one’s male spouse: ∀w, h Husband(h,w) ⇔Male(h) 𝖠Spouse(h,w) . 

 

3. Male and female are disjoint categories: ∀xMale(x) ⇔￢Female(x) . 

 
4. Parent and child are inverse relations: ∀p, c Parent(p, c) ⇔Child (c, p) . 

 
5. A grandparent is a parent of one’s parent: ∀g, c Grandparent (g, c) ⇔∃p Parent(g, p) 

𝖠Parent(p, c) . 

 
6. A sibling is another child of one’s parents: ∀x, y Sibling(x, y) ⇔x _= y 𝖠∃p Parent(p, x) 

𝖠Parent(p, y) . 

Axioms: 

Each of these sentences can be viewed as an axiom of the kinship domain. Axioms are 

commonly associated with purely mathematical domains. They provide the basic factual 

information from which useful conclusions can be derived. 

Kinship axioms are also definitions; they have the form ∀x, y P(x, y) ⇔. . .. 

 
The axioms define the Mother function, Husband, Male, Parent, Grandparent, and Sibling 

predicates in terms of other predicates. 

Our definitions “bottom out” at a basic set of predicates (Child, Spouse, and Female) in terms 

of which the others are ultimately defined. This is a natural way in which to build up the 

representation of a domain, and it is analogous to the way in which software packages are built 

up by successive definitions of subroutines from primitive library functions. 

Theorems: 

 
Not all logical sentences about a domain are axioms. Some are theorems—that is, they are 

entailed by the axioms. 

For example, consider the assertion that siblinghood is symmetric: ∀x, y Sibling(x, y) 

⇔Sibling(y, x) . 
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It is a theorem that follows logically from the axiom that defines siblinghood. If we ASK the 

knowledge base this sentence, it should return true. From a purely logical point of view, a 

knowledge base need contain only axioms and no theorems, because the theorems do not 

increase the set of conclusions that follow from the knowledge base. From a practical point of 

view, theorems are essential to reduce the computational cost of deriving new sentences. 

Without them, a reasoning system has to start from first principles every time. 

Axioms Axioms without Definition 

 
Not all axioms are definitions. Some provide more general information about certain predicates 

without constituting a definition. Indeed, some predicates have no complete definition because 

we do not know enough to characterize them fully. 

For example, there is no obvious definitive way to complete the sentence 

 
∀xPerson(x) ⇔. . . 

 
Fortunately, first-order logic allows us to make use of the Person predicate without completely 

defining it. Instead, we can write partial specifications of properties that every person has and 

properties that make something a person: 

∀xPerson(x) ⇒. . . ∀x . . . ⇒Person(x) . 

 
Axioms can also be “just plain facts,” such as Male (Jim) and Spouse (Jim, Laura).Such facts 

form the descriptions of specific problem instances, enabling specific questions to be answered. 

The answers to these questions will then be theorems that follow from the axioms 

Numbers, sets, and lists 

Number theory 

Numbers are perhaps the most vivid example of how a large theory can be built up from 

NATURAL NUMBERS a tiny kernel of axioms. We describe here the theory of natural 

numbers or non-negative integers. We need: 

predicate NatNum that will be true of natural numbers; one PEANO AXIOMS constant 

symbol, 0;   One function symbol, S (successor).    The Peano axioms define natural 

numbers and addition. 

Natural numbers are defined recursively:  NatNum(0) . ∀n NatNum(n) ⇒ NatNum(S(n)) . 
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That is, 0 is a natural number, and for every object n, if n is a natural number, then S(n) is a 

natural number. 

So the natural numbers are 0, S(0), S(S(0)), and so on. We also need axioms to constrain the 

successor function: ∀n 0 != S(n) .  ∀m, n m != n ⇒ S(m) != S(n) . 

Now we can define addition in terms of the successor function: ∀m NatNum(m) ⇒ + (0, m) = 

m . ∀m, n NatNum(m) 𝖠 NatNum(n) ⇒ + (S(m), n) = S(+(m, n)) 

The first of these axioms says that adding 0 to any natural number m gives m itself. Addition is 

represented using the binary function symbol “+” in the term + (m, 0); 

To make our sentences about numbers easier to read, we allow the use of infix notation. We 

can also write S(n) as n + 1, so the second axiom becomes : 

∀m, n NatNum (m) 𝖠 NatNum(n) ⇒ (m + 1) + n = (m + n)+1 . 

 
This axiom reduces addition to repeated application of the successor function. Once we have 

addition, it is straightforward to define multiplication as repeated addition, exponentiation as 

repeated multiplication, integer division and remainders, prime numbers, and so on. Thus, the 

whole of number theory (including cryptography) can be built up from one constant, one 

function, one predicate and four axioms. 

Sets 

 
The domain of sets is also fundamental to mathematics as well as to commonsense reasoning. 

Sets can be represented as individualsets, including empty sets. 

Sets can be built up by: adding an element to a set or Taking the union or intersection of 

two sets. 

Operations that can be performed on sets are: To know whether an element is a member of a 

set Distinguish sets from objects that are not sets. 

Vocabulary of set theory: 

 
The empty set is a constant written as { }. There is one unary predicate, Set, which is true of 

sets. The binary predicates are 

x∈ s (x is a member of set s) s1 ⊆ s2 (set s1 is a subset, not necessarily proper, of set s2). 
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The binary functions are 
 

s1 ∩ s2 (the intersection of two sets), s1 𝖴 s2 (the union of two sets), and {x|s} (the set 

resulting from adjoining element x to set s). 

 

 
One possible set of axioms is as follows: 

 
The only sets are the empty set and those made by adjoining something to a set: ∀sSet(s) 

⇔(s={}) ∨(∃x, s2 Set(s2) 𝖠s={x|s2}) .     The empty set has no elements adjoined into it. In 

other words, there is no way to decompose {} into a smaller set and an element: ￢∃x, s 

{x|s}={} . Adjoining an element already in the set has no effect: ∀x, s x∈s ⇔s={x|s} . The 

only members of a set are the elements that were adjoined into it. We express this recursively, 

saying that x is a member of s if and only if s is equal to some set s2 adjoined with some 

element y, where either y is the same as x or x is a member of s2: ∀x, s x∈s ⇔∃y, s2 (s={y|s2} 

𝖠(x=y ∨x∈s2)) A set is a subset of another set if and only if all of the first set’s members are 

members of the second set: ∀s1, s2 s1 ⊆s2 ⇔(∀x x∈s1 ⇒x∈s2)     Two sets are equal if and 

only if each is a subset of the other: ∀s1, s2 (s1 =s2) ⇔(s1 ⊆s2 𝖠s2 ⊆s1) 

 
 

 

An object is in the intersection of two sets if and only if it is a member of both sets: ∀x, s1, 

s2 x∈(s1 ∩ s2) ⇔(x∈s1 𝖠x∈s2) An object is in the union of two sets if and only if it is a 

member of either set: ∀x, s1, s2 x∈(s1 𝖴s2) ⇔(x∈s1 ∨x∈s2) 

Lists : are similar to sets. The differences are that lists are ordered and the same element 

canappear more than once in a list. We can use the vocabulary of Lisp for lists: 

Nil is the constant list with no elements;  Cons, Append, First, and Rest are functions;  

Find is the predicate that does for lists what Member does for sets. List? is a predicate that is 

true only of lists.  The empty list is [ ]. The term Cons(x, y), where y is a nonempty list, is 

written [x|y]. The term Cons(x, Nil) (i.e., the list containing the element x) is written as [x]. 

A list of several elements, such as [A,B,C], corresponds to the nested term Cons(A, 

Cons(B, Cons(C, Nil))). 

The wumpus world 

 
Agents Percepts and Actions 
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The wumpus agent receives a percept vector with five elements. The corresponding first-order 

sentence stored in the knowledge base must include both the percept and the time at which it 

occurred; otherwise, the agent will get confused about when it saw what.We use integers for 

time steps. A typical percept sentence would be 

Percept ([Stench, Breeze, Glitter,None, None], 5). 

 

 
 

Here, Percept is a binary predicate, and Stench and so on are constants placed in a list. The 

actions in the wumpus world can be represented by logical terms: 

Turn (Right), Turn (Left), Forward,Shoot,Grab, Climb. 

 
To determine which is best, the agent program executes the query: 

 
ASKVARS (∃a BestAction (a, 5)), which returns a binding list such as {a/Grab}. 

The agent program can then return Grab as the action to take. 

The raw percept data implies certain facts about the current state. 

 
For example: ∀t, s, g, m, c Percept ([s, Breeze, g,m, c], t) ⇒Breeze(t) , ∀t, s, b, m, c Percept ([s, 

b, Glitter,m, c], t) ⇒Glitter (t) , 

 

 
UNIT III – Knowledge and Reasoning 

 
These rules exhibit a trivial form of the reasoning process called perception. 

 
Simple “reflex” behavior can also be implemented by quantified implication sentences. 

For example, we have ∀tGlitter (t) ⇒BestAction(Grab, t) . 

Given the percept and rules from the preceding paragraphs, this would yield the desired 

conclusion Best Action (Grab, 5)—that is, Grab is the right thing to do. 

Environment Representation 

 
Objects are squares, pits, and the wumpus. Each square could be named—Square1,2and so 

on—but then the fact that Square1,2and Square1,3 are adjacent would have to be an “extra” 
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fact, and this needs one suchfact for each pair of squares. It is better to use a complex term in 

which the row and columnappear as integers; 

For example, we can simply use the list term [1, 2]. 

Adjacency of any two squares can be defined as: 

∀x, y, a, b Adjacent ([x, y], [a, b]) ⇔ (x = a 𝖠(y = b − 1 ∨y = b + 1)) ∨(y = b 𝖠(x = a − 1 ∨x = 

a + 1)). 

Each pit need not be distinguished with each other. The unary predicate Pit is true of squares 

containing pits. 

Since there is exactly one wumpus, a constant Wumpus is just as good as a unary predicate. 

The agent’s location changes over time, so we write At (Agent, s, t) to mean that theagent is at 

square s at time t. 

To specify the Wumpus location (for example) at [2, 2] we can write ∀t At (Wumpus, [2, 2], t). 

Objects can only be at one location at a time: ∀x, s1, s2, t At(x, s1, t) 𝖠At(x, s2, t) ⇒s1 = s2 . 

Given its current location, the agent can infer properties of the square from properties of its 

current percept. 

For example, if the agent is at a square and perceives a breeze, then that square is breezy: 

 

∀s, t At(Agent, s, t) 𝖠Breeze(t) ⇒Breezy(s) . 

 
It is useful to know that a square is breezy because we know that the pits cannot move about. 

Breezy has no time argument. 

Having discovered which places are breezy (or smelly) and, very importantly, not breezy (or 

not smelly), the agent can deduce where the pits =e (and where the wumpus is). 

There are two kinds of synchronic rules that could allow such deductions: 

Diagnostic rules: 

Diagnostic rules lead from observed effects to hidden causes. For finding pits, the obvious 

diagnostic rules say that if a square is breezy, some adjacent square must contain a pit, or 

∀s Breezy(s) ⇒∃r Adjacent (r, s)𝖠Pit(r) , 
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and that if a square is not breezy, no adjacent square contains a pit: ∀s￢Breezy (s) ⇒￢∃r 

Adjacent (r, s) 𝖠 Pit (,r) .Combining these two, we obtain the biconditional sentence ∀s Breezy 

( s )⇔∃r Adjacent(r, s) 𝖠 Pit (r) . 

Causal rules: 

 
Causal rules reflect the assumed direction of causality in the world: some hidden property of the 

world causes certain percepts to be generated. For example, a pit causes all adjacent squares to 

be breezy: 

and if all squares adjacent to a given square are pitless, the square will not be breezy: ∀s[∀r 

Adjacent (r, s) ⇒￢Pit (r)] ⇒￢Breezy ( s ) . 

 

 
It is possible to show that these two sentences together are logically equivalent to the 

biconditional sentence “ ∀s Breezy ( s )⇔∃r Adjacent(r, s) 𝖠 Pit (r)” . 

The biconditional itself can also be thought of as causal, because it states how the truth value 

of Breezy is generated from the world state. 

Systems that reason with causal rules are called model-based reasoning systems, because the 

causal rules form a model of how the environment operates. 

Whichever kind of representation the agent uses, ifthe axioms correctly and completely 

describe the way the world works and the way that percepts are produced, then any complete 

logical inference procedure will infer the strongest possible description of the world state, given 

the available percepts. Thus, the agent designer can concentrate on getting the knowledgeright, 

without worrying too much about the processes of deduction. 

Inference in First-Order Logic 
 

Propositional Vs First Order Inference 

Earlier inference in first order logic is performed with Propositionalization which is a process of 

converting the Knowledgebase present in First Order logic into Propositional logic and on that 

using any inference mechanisms of propositional logic are used to check inference. 

Inference rules for quantifiers: 
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There are some Inference rules that can be applied to sentences with quantifiers to obtain sentences 

without quantifiers. These rules will lead us to make the conversion. 

Universal Instantiation (UI): 

The rule says that we can infer any sentence obtained by substituting a ground term (a term 

without variables) for the variable. Let SUBST (θ) denote the result of applying the substitution θ 

to the sentence a. Then the rule is written 

For any variable v and ground term g. 

For example, there is a sentence in knowledge base stating that all greedy kings are Evils 
 

For the variable x, with the substitutions like {x/John},{x/Richard}the following sentences can be 

inferred. 

 

 

Thus a universally quantified sentence can be replaced by the set of all possible instantiations. 

 
Existential Instantiation (EI): 

 
The existential sentence says there is some object satisfying a condition, and the instantiation 

process is just giving a name to that object, that name must not already belong to another object. 

This new name is called a Skolem constant. Existential Instantiation is a special case of a more 

general process called “skolemization”. 

For any sentence a, variable v, and constant symbol k that does not appear elsewhere in the 

knowledge base, 

For example, from the sentence 
 

So, we can infer the sentence 
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As long as C1 does not appear elsewhere in the knowledge base. Thus an existentially quantified 

sentence can be replaced by one instantiation 

Elimination of Universal and Existential quantifiers should give new knowledge base which can be 

shown to be inferentially equivalent to old in the sense that it is satisfiable exactly when the 

original knowledge base is satisfiable. 

 
Reduction to propositional inference: 

Once we have rules for inferring non quantified sentences from quantified sentences, it becomes 

possible to reduce first-order inference to propositional inference. For example, suppose our 

knowledge base contains just the sentences 

Then we apply UI to the first sentence using all possible ground term substitutions from the 

vocabulary of the knowledge base-in this case, {xl John) and {x/Richard). We obtain 

 

We discard the universally quantified sentence. Now, the knowledge base is essentially 

propositional if we view the ground atomic sentences-King (John), Greedy (John), and Brother 

(Richard, John) as proposition symbols. Therefore, we can apply any of the complete propositional 

algorithms to obtain conclusions such as Evil (John). 

 
Disadvantage: 

If the knowledge base includes a function symbol, the set of possible ground term substitutions is 

infinite. Propositional algorithms will have difficulty with an infinitely large set of sentences. 

NOTE: 

Entailment for first-order logic is semi decidable which means algorithms exist that say yes to 

every entailed sentence, but no algorithm exists that also says no to every non entailed sentence 

Unification and Lifting 
 

 

Consider the above discussed example, if we add Siblings (Peter, Sharon) to the knowledge base 

then it will be 
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Removing Universal Quantifier will add new sentences to the knowledge base which are not 

necessary for the query Evil (John)? 

Hence we need to teach the computer to make better inferences. For this purpose Inference rules 

were used. 

 
First Order Inference Rule: 

The key advantage of lifted inference rules over propositionalization is that they make only those 

substitutions which are required to allow particular inferences to proceed. 

 
Generalized Modus Ponens: 

If there is some substitution θ that makes the premise of the implication identical to sentences 

already in the knowledge base, then we can assert the conclusion of the implication, after applying 

θ. This inference process can be captured as a single inference rule called General ized Modus 

Ponens which is a lifted version of Modus Ponens-it raises Modus Ponens from propositional to 

first-order logic 

For atomic sentences pi, pi ', and q, where there is a substitution θ such that SUBST( θ , pi ) = 

SUBST(θ , pi '), for all i, 

p1 ', p2 ', …, pn ', (p1 𝖠 p2 𝖠 … 𝖠 pn ⇒ q) 

SUBST (θ, q) 

There are N + 1 premises to this rule, N atomic sentences + one implication. 

Applying SUBST (θ, q) yields the conclusion we seek. It is a sound inference rule. 

Suppose that instead of knowing Greedy (John) in our example we know that everyone is greedy: 

∀y Greedy(y) 
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We would conclude that Evil(John). 

 
Applying the substitution {x/John, y / John) to the implication premises King ( x ) and Greedy ( x ) 

and the knowledge base sentences King(John) and Greedy(y) will make them identical. Thus, we 

can infer the conclusion of the implication. 

 
 

For our example, 

 

 
Unification: 

 
It is the process used to find substitutions that make different logical expressions look identical. 

Unification is a key component of all first-order Inference algorithms. 

UNIFY (p, q) = θ where SUBST (θ, p) = SUBST (θ, q) θ is our unifier value (if one exists). 

Ex: “Who does John know?” 

UNIFY (Knows (John, x), Knows (John, Jane)) = {x/ Jane}. 

UNIFY (Knows (John, x), Knows (y, Bill)) = {x/Bill, y/ John}. 

UNIFY (Knows (John, x), Knows (y, Mother(y))) = {x/Bill, y/ John} 

UNIFY (Knows (John, x), Knows (x, Elizabeth)) = FAIL 

 
 The last unification fails because both use the same variable, X.   X can’t equal both John 

and Elizabeth. To avoid this change the variable X to Y (or any other value) in Knows(X, 

Elizabeth) 

Knows(X, Elizabeth) → Knows(Y, Elizabeth) 

 
 

Still means the same. This is called standardizing apart. 

 sometimes it is possible for more than one unifier returned: 

UNIFY (Knows (John, x), Knows(y, z)) =??? 
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This can return two possible unifications: {y/ John, x/ z} which means Knows (John, z) OR {y/ 

John, x/ John, z/ John}. For each unifiable pair of expressions there is a single most general 

unifier (MGU), In this case it is {y/ John, x/z). 

 
An algorithm for computing most general unifiers is shown below. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 2.1 The unification algorithm. The algorithm works by comparing the structures of the 

inputs, element by element. The substitution 0 that is the argument to UNIFY is built up along the 

way and is used to make sure that later comparisons are consistent with bindings that were 

established earlier. In a compound expression, such as F (A, B), the function OP picks out the 

function symbol F and the function ARCS picks out the argument list (A, B). 

 

The process is very simple: recursively explore the two expressions simultaneously "side by side," 

building up a unifier along the way, but failing if two corresponding points in the structures do not 

match. Occur check step makes sure same variable isn’t used twice. 
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Storage and retrieval 

 STORE(s) stores a sentence s into the knowledge base 

 FETCH(s) returns all unifiers such that the query q unifies with some sentence in the 

knowledge base. 

Easy way to implement these functions is Store all sentences in a long list, browse list one sentence 

at a time with UNIFY on an ASK query. But this is inefficient. 

To make FETCH more efficient by ensuring that unifications are attempted only with sentences 

that have some chance of unifying. (i.e. Knows(John, x) vs. Brother(Richard, John) are not 

compatible for unification) 

 To avoid this, a simple scheme called predicate indexing puts all the Knows facts in one 

bucket and all the Brother facts in another. 

 The buckets can be stored in a hash table for efficient access. Predicate indexing is useful 

when there are many predicate symbols but only a few clauses for each symbol. 

 
But if we have many clauses for a given predicate symbol, facts can be stored under multiple index 

keys. 

For the fact Employs (AIMA.org, Richard), the queries are 

Employs (A IMA. org, Richard) Does AIMA.org employ Richard? 

Employs (x, Richard) who employs Richard? 

Employs (AIMA.org, y) whom does AIMA.org employ? 

Employs Y(x), who employs whom? 

 
We can arrange this into a subsumption lattice, as shown below. 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 (a) The subsumption lattice whose lowest node is the sentence Employs (AIMA.org, 

Richard). (b) The subsumption lattice for the sentence Employs (John, John). 

 

A subsumption lattice has the following properties: 

 child of any node obtained from its parents by one substitution 
 

Artificial Intelligence Page 88 



DEPARTMENT OF CSE III YEAR/I SEM 
a 

 

 the “highest” common descendant of any two nodes is the result of applying their most 

general unifier 

 predicate with n arguments contains O(2n ) nodes (in our example, we have two arguments, 

so our lattice has four nodes) 

 Repeated constants = slightly different lattice. 

 
Forward Chaining 

 

 

First-Order Definite Clauses: 

A definite clause either is atomic or is an implication whose antecedent is a conjunction of positive 

literals and whose consequent is a single positive literal. The following are first-order definite 

clauses: 

Unlike propositional literals, first-order literals can include variables, in which case those variables 

are assumed to be universally quantified. 

Consider the following problem; 

“The law says that it is a crime for an American to sell weapons to hostile nations. The country 

Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel 

West, who is American.” 

We will represent the facts as first-order definite clauses 

". . . It is a crime for an American to sell weapons to hostile nations": 
 

 
 

--------- (1) 

"Nono . . . has some missiles." The sentence 3 x Owns (Nono, .rc) A Missile (x) is transformed into 

two definite clauses by Existential Elimination, introducing a new constant M1: 

Owns (Nono, M1) ----------------- (2) 

Missile (Ml) ------------------------- (3) 

"All of its missiles were sold to it by Colonel West": 

Missile (x) A Owns (Nono, x) =>Sells (West, z, Nono) ----------------- (4) 

We will also need to know that missiles are weapons: 

Missile (x) => Weapon (x) ---------- (5) 
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We must know that an enemy of America counts as "hostile": 

Enemy (x, America) =>Hostile(x)------------ (6) 

"West, who is American": 

American (West) ---------------- (7) 

"The country Nono, an enemy of America ": 

Enemy (Nono, America) ------------ (8) 

 
 

A simple forward-chaining algorithm: 

 Starting from the known facts, it triggers all the rules whose premises are satisfied, adding 

their conclusions lo the known facts 

 The process repeats until the query is answered or no new facts are added. Notice that a fact 

is not "new" if it is just renaming of a known fact. 

 
We will use our crime problem to illustrate how FOL-FC-ASK works. The implication sentences 

are (1), (4), (5), and (6). Two iterations are required: 

 On the first iteration, rule (1) has unsatisfied premises. 

Rule (4) is satisfied with {x/Ml), and Sells (West, M1, Nono) is added. 

Rule (5) is satisfied with {x/M1) and Weapon (M1) is added. 

Rule (6) is satisfied with {x/Nono}, and Hostile (Nono) is added. 

 On the second iteration, rule (1) is satisfied with {x/West, Y/MI, z /Nono), and Criminal 

(West) is added. 

It is sound, because every inference is just an application of Generalized Modus Ponens, it is 

complete for definite clause knowledge bases; that is, it answers every query whose answers are 

entailed by any knowledge base of definite clauses 
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Figure 3.1 A conceptually straightforward, but very inefficient, forward-chaining 

algorithm. On each iteration, it adds to KB all the atomic sentences that can be inferred 

in one step from the implication sentences and the atomic sentences already in KB. 

 
 

 
Figure 3.2 The proof tree generated by forward chaining on the crime example. The initial 

facts appear at the bottom level, facts inferred on the first iteration in the middle level, and 

facts inferred on the second iteration at the top level. 

 

Efficient forward chaining: 

The above given forward chaining algorithm was lack with efficiency due to the the three sources 

of complexities: 

 Pattern Matching 

 Rechecking of every rule on every iteration even a few additions are made to rules 

 Irrelevant facts 
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1. Matching rules against known facts: 

For example, consider this rule, 

Missile(x) A Owns (Nono, x) => Sells (West, x, Nono). 

 
 

The algorithm will check all the objects owned by Nono in and then for each object, it could check 

whether it is a missile. This is the conjunct ordering problem: 

“Find an ordering to solve the conjuncts of the rule premise so that the total cost is minimized”. 

The most constrained variable heuristic used for CSPs would suggest ordering the conjuncts to 

look for missiles first if there are fewer missiles than objects that are owned by Nono. 

The connection between pattern matching and constraint satisfaction is actually very close. We can 

view each conjunct as a constraint on the variables that it contains-for example, Missile(x) is a 

unary constraint on x. Extending this idea, we can express every finite-domain CSP as a single 

definite clause together with some associated ground facts. Matching a definite clause against a set 

of facts is NP-hard 

 
2. Incremental forward chaining: 

On the second iteration, the rule Missile (x) => Weapon (x) 

Matches against Missile (M1) (again), and of course the conclusion Weapon(x/M1) is already 

known so nothing happens. Such redundant rule matching can be avoided if we make the following 

observation: 

“Every new fact inferred on iteration t must be derived from at least one new fact inferred on 

iteration t – 1”. 

This observation leads naturally to an incremental forward chaining algorithm where, at iteration t, 

we check a rule only if its premise includes a conjunct p, that unifies with a fact p: newly inferred 

at iteration t - 1. The rule matching step then fixes p, to match with p’, but allows the other 

conjuncts of the rule to match with facts from any previous iteration. 

 
3. Irrelevant facts: 

 One way to avoid drawing irrelevant conclusions is to use backward chaining. 

 Another solution is to restrict forward chaining to a selected subset of rules 
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  A third approach, is to rewrite the rule set, using information from the goal.so that only 

relevant variable bindings-those belonging to a so-called magic set-are considered during 

forward inference. 

For example, if the goal is Criminal (West), the rule that concludes Criminal (x) will be rewritten 

to include an extra conjunct that constrains the value of x: 

 
Magic(x) A American(z) A Weapon(y)A Sells(x, y, z) A Hostile(z) =>Criminal(x ) 

 
 

The fact Magic (West) is also added to the KB. In this way, even if the knowledge base contains 

facts about millions of Americans, only Colonel West will be considered during the forward 

inference process. 

                                       4 .Backward Chaining 

This algorithm work backward from the goal, chaining through rules to find known facts that 

support the proof. It is called with a list of goals containing the original query, and returns the set of 

all substitutions satisfying the query. The algorithm takes the first goal in the list and finds every 

clause in the knowledge base whose head, unifies with the goal. Each such clause creates a new 

recursive call in which body, of the clause is added to the goal stack .Remember that facts are 

clauses with a head but no body, so when a goal unifies with a known fact, no new sub goals are 

added to the stack and the goal is solved. The algorithm for backward chaining and proof tree for 

finding criminal (West) using backward chaining are given below. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4.1 A simple backward-chaining algorithm. 
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. 
 

 

 

Figure 4.2 Proof tree constructed by backward chaining to prove that West is a criminal. The tree should 

be read depth first, left to right. To prove Criminal (West), we have to prove the four conjuncts below it. 

Some of these are in the knowledge base, and others require further backward chaining. Bindings for each 

successful unification are shown next to the corresponding sub goal. Note that once one sub goal in a 

conjunction succeeds, its substitution is applied to subsequent sub goals. 

Logic programming: 

 Prolog is by far the most widely used logic programming language. 

 Prolog programs are sets of definite clauses written in a notation different from standard 

first-order logic. 

 Prolog uses uppercase letters for variables and lowercase for constants. 

 Clauses are written with the head preceding the body; " : -" is used for left implication, 

commas separate literals in the body, and a period marks the end of a sentence 

 

Prolog includes "syntactic sugar" for list notation and arithmetic. Prolog program for append (X, Y, 

Z), which succeeds if list Z is the result of appending lists x and Y 

 

For example, we can ask the query append (A, B, [1, 2]): what two lists can be appended to give [1, 

2]? We get back the solutions 
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 The execution of Prolog programs is done via depth-first backward chaining 

 Prolog allows a form of negation called negation as failure. A negated goal not P is 

considered proved if the system fails to prove p. Thus, the sentence 

Alive (X) : - not dead(X) can be read as "Everyone is alive if not provably dead." 

 Prolog has an equality operator, =, but it lacks the full power of logical equality. An 

equality goal succeeds if the two terms are unifiable and fails otherwise. So X+Y=2+3 

succeeds with x bound to 2 and Y bound to 3, but Morningstar=evening star fails. 

 The occur check is omitted from Prolog's unification algorithm. 

 

Efficient implementation of logic programs: 

The execution of a Prolog program can happen in two modes: interpreted and compiled. 

 Interpretation essentially amounts to running the FOL-BC-ASK algorithm, with the 

program as the knowledge base. These are designed to maximize speed. 

First, instead of constructing the list of all possible answers for each sub goal before 

continuing to the next, Prolog interpreters generate one answer and a "promise" to generate the 

rest when the current answer has been fully explored. This promise is called a choice point. 

FOL-BC-ASK spends a good deal of time in generating and composing substitutions when a 

path in search fails. Prolog will backup to previous choice point and unbind some variables. 

This is called “TRAIL”. So, new variable is bound by UNIFY-VAR and it is pushed on to trail. 

 
 Prolog Compilers compile into an intermediate language i.e., Warren Abstract Machine or 

WAM named after David. H. D. Warren who is one of the implementers of first prolog 

compiler. So, WAM is an abstract instruction set that is suitable for prolog and can be either 

translated or interpreted into machine language. 

Continuations are used to implement choice point’s continuation as packaging up a procedure and 

a list of arguments that together define what should be done next whenever the current goal 

succeeds. 

 Parallelization can also provide substantial speedup. There are two principal sources of 

parallelism 

1. The first, called OR-parallelism, comes from the possibility of a goal unifying with many 

different clauses in the knowledge base. Each gives rise to an independent branch in the 

search space that can lead to a potential solution, and all such branches can be solved in 

parallel. 
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2. The second, called AND-parallelism, comes from the possibility of solving each conjunct 

in the body of an implication in parallel. AND-parallelism is more difficult to achieve, 

because solutions for the whole conjunction require consistent bindings for all the variables. 

Redundant inference and infinite loops: 

Consider the following logic program that decides if a path exists between two points on a directed 

graph. 

 

A simple three-node graph, described by the facts link (a, b) and link (b, c) 
 

It generates the query path (a, c) 

Hence each node is connected to two random successors in the next layer. 
 

 

Figure 4.3 (a) Proof that a path exists from A to C. (b) Infinite proof tree generated when the 

clauses are in the "wrong" order. 

 

 

Constraint logic programming: 

The Constraint Satisfaction problem can be solved in prolog as same like backtracking algorithm. 

Because it works only for finite domain CSP’s in prolog terms there must be finite number of 

solutions for any goal with unbound variables. 
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 If we have a query, triangle (3, 4, and 5) works fine but the query like, triangle (3, 4, Z) no 

solution. 

 The difficulty is variable in prolog can be in one of two states i.e., Unbound or bound. 

 Binding a variable to a particular term can be viewed as an extreme form of constraint 

namely “equality”.CLP allows variables to be constrained rather than bound. 

The solution to triangle (3, 4, Z) is Constraint 7>=Z>=1. 

 

 

 
5. Resolution 

As in the propositional case, first-order resolution requires that sentences be in conjunctive normal 

form (CNF) that is, a conjunction of clauses, where each clause is a disjunction of literals. 

 
Literals can contain variables, which are assumed to be universally quantified. Every sentence of 

first-order logic can be converted into an inferentially equivalent CNF sentence. We will illustrate 

the procedure by translating the sentence 

"Everyone who loves all animals is loved by someone," or 
 

The steps are as follows: 

 Eliminate implications: 
 

 Move Negation inwards: In addition to the usual rules for negated connectives, we need 

rules for negated quantifiers. Thus, we have 

 

 

 

 
Our sentence goes through the following transformations: 
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 Standardize variables:   For sentences like which use the 

same variable name twice, change the name of one of the variables. This avoids confusion 

later when we drop the quantifiers. Thus, we have 

 Skolemize: Skolemization is the process of removing existential quantifiers by elimination. 

Translate 3 x P(x) into P(A), where A is a new constant. If we apply this rule to our sample 

sentence, however, we obtain 

 
 

Which has the wrong meaning entirely: it says that everyone either fails to love a particular animal 

A or is loved by some particular entity B. In fact, our original sentence allows each person to fail to 

love a different animal or to be loved by a different person. 

Thus, we want the Skolem entities to depend on x: 
 

 
 

Here F and G are Skolem functions. The general rule is that the arguments of the Skolem function 

are all the universally quantified variables in whose scope the existential quantifier appears. 

 
 Drop universal quantifiers: At this point, all remaining variables must be universally 

quantified. Moreover, the sentence is equivalent to one in which all the universal quantifiers 

have been moved to the left. We can therefore drop the universal quantifiers 

 Distribute V over A 
 

 
 

This is the CNF form of given sentence. 

The resolution inference rule: 
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The resolution rule for first-order clauses is simply a lifted version of the propositional resolution 

rule. Propositional literals are complementary if one is the negation of the other; first-order literals 

are complementary if one unifies with the negation of the other. Thus we have 

 

 
 

Where UNIFY (li, m j) == θ. 

For example, we can resolve the two clauses 
 

By eliminating the complementary literals Loves (G(x), x) and ¬Loves (u, v), with unifier 

θ = {u/G(x), v/x), to produce the resolvent clause 

 

Example proofs: 

Resolution proves that KB /= a by proving KB A la unsatisfiable, i.e., by deriving the empty clause. 

The sentences in CNF are 

 
 

The resolution proof is shown in below figure; 
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Figure 5.1 A resolution proof that West is a criminal. 
 

Notice the structure: single "spine" beginning with the goal clause, resolving against clauses from 

the knowledge base until the empty clause is generated. Backward chaining is really just a special 

case of resolution with a particular control strategy to decide which resolution to perform next. 
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UNIT IV 
 
 

 

DEFINITION OF CLASSIC PLANNING: 

The problem-solving agent of Chapter 3 can find sequences of actions that result in a goal state. 

But it deals with atomic representations of states and thus needs good domain-specific heuristics to 

perform well. The hybrid propositional logical agent of Chapter 7 can find plans without domain- 

specific heuristics because it uses domain-independent heuristics based on the logical   structure 

of the problem. But it relies on ground (variable-free) propositional inference, which means 

that it may be swamped when there are many actions and states. For example, in the wumpus 

world, the simple action of moving a step forward had to be repeated for all four agent orientations, 

T time steps, and n2 current locations. 

In response to this, planning researchers have settled on a factored representation— one in which a 

state of the world is represented by a collection of variables. We use a language called PDDL, the Planning 

Domain Definition Language, that allows us to express all 4T n2 actions with one action schema. There 

have been several versions of PDDL; we select a simple version and alter its syntax to be consistent with 

the rest of the book.1 We now show how PDDL describes the four things we need to define a search 

problem: the initial state, the actions that are available in a state, the result of applying an action, and the 

goal test. 

Each state is represented as a conjunction of fluents that are ground, functionless atoms. For 

example, Poor ∧ Unknown might represent the state of a hapless agent, and a state in a package 

delivery problem might be At(Truck1, Melbourne) ∧ At(Truck2, Sydney). Database semantics is used: the 

closed-world assumption means that any fluents that are not mentioned are false, and the unique names 

assumption means that Truck1 and Truck2 are distinct. The following fluents are not allowed in a state: 

At(x, y) (because it is non-ground), 

¬Poor (because it is a negation), and At(Father(Fred), Sydney) (because it uses a function symbol). The 

representation of states is carefully designed so that a state can be treated either as a conjunction of 

fluents, which can be manipulated by logical inference, or as a set of fluents, which can be manipulated 

with set operations. The set semantics is sometimes easier to deal with. 

Actions are described by a set of action schemas that implicitly define the ACTIONS(s) and RESULT(s, a) 

functions needed to do a problem-solving search. We saw in Chapter 7 that any system for action 

description needs to solve the frame problem—to say what changes and what stays the same as the result 

of the action. Classical planning concentrates on problems where most actions leave most things 

unchanged. Think of a world consisting of a bunch of objects on a flat surface. The action of nudging an 

object causes that object to change its lo- cation by a vector ∆. A concise description of the action should 

mention only ∆; it shouldn’t have to mention all the objects that stay in place. PDDL does that by specifying 

the result of an action in terms of what changes; everything that stays the same is left unmentioned. 

A set of ground (variable-free) actions can be represented by a single action schema. The schema is a 

lifted representation—it lifts the level of reasoning from propositional logic to a restricted subset of first- 

order logic. For example, here is an action schema for flying a plane from one location to another: 
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Action(Fly(p, from, to), 

PRECOND:At(p, from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to) 

EFFECT:¬At(p, from) ∧ At(p, to)) 

The schema consists of the action name, a list of all the variables used in the schema, a 

precondition and an effect. 
 

 
ALGORITHMS FOR PLANNING AS STATE-SPACE SEARCH 

Now we turn our attention to planning algorithms. We saw how the description of a 

planning problem defines a search problem: we can search from the initial state 

through the space of states, looking for a goal. One of the nice advantages of the 

declarative representation of action schemas is that we can also search backward 

from the goal, looking for the initial state. Figure 10.5 compares forward and 

backward searches. 

 
 

10.2.1 Forward (progression) state-space search 

 

Now that we have shown how a planning problem maps into a search problem, we 

can solve planning problems with any of the heuristic search algorithms from 

Chapter 3 or a local search algorithm from Chapter 4 (provided we keep track of 

the actions used to reach the goal). From the earliest days of planning research 

(around 1961) until around 1998 it was assumed that forward state-space search was 

too inefficient to be practical. It is not hard to come up with reasons why. 

First, forward search is prone to exploring irrelevant actions. Consider the 

noble task of buying a copy of AI: A Modern Approach from an online bookseller. 

Suppose there is an 
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1. Figure 10.5     Two approaches to searching for a plan.   (a) Forward (progression) 

search through the space of states, starting in the initial state and using the problem’s 

actions to search forward for a member of the set of goal states. (b) Backward 

(regression) search through sets of relevant states, starting at the set of states 

representing the goal and using the inverse of the actions to search backward for the 

initial state. 

 

 
action schema Buy(isbn) with effect Own(isbn). ISBNs are 10 digits, so this action 

schema represents 10 billion ground actions. An uninformed forward-search 

algorithm would have to start enumerating these 10 billion actions to find one that 

leads to the goal. 

Second, planning problems often have large state spaces. Consider an air cargo 

problem with 10 airports, where each airport has 5 planes and 20 pieces of cargo. 

The goal is to move all the cargo at airport A to airport B. There is a simple solution 

to the problem: load the 20 pieces of cargo into one of the planes at A, fly the plane 

to B, and unload the cargo. Finding the solution can be difficult because the 

average branching factor is huge: each of the 50 planes can fly to 9 other airports, 

and each of the 200 packages can be either unloaded (if it is loaded) or loaded into 

any plane at its airport (if it is unloaded). So in any state there is a minimum of 450 

actions (when all the packages are at airports with no planes) and a maximum of 

10,450 (when all packages and planes are at the same airport). On average, let’s say 
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there are about 2000 possible actions per state, so the search graph up to the depth of 

the obvious solution has about 200041 nodes. 

Clearly, even this relatively small problem instance is hopeless without 

an accurate heuristic. Although many real-world applications of planning have 

relied on domain-specific heuristics, it turns out (as we see in Section 10.2.3) that 

strong domain-independent heuristics can be derived automatically; that is what 

makes forward search feasible. 

 

RELEVANT-STATES 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

Artificial Intelligence Page 104 



 

DEPARTMENT OF CSE III YEAR/I SEM 
 

 

Backward (regression) relevant-states search 

 

In regression search we start at the goal and apply the actions backward until we find a 

sequence of steps that reaches the initial state. It is called relevant-states search because we only 

consider actions that are relevant to the goal (or current state). As in belief-state search (Section 

4.4), there is a set of relevant states to consider at each step, not just a single state. 

We start with the goal, which is a conjunction of literals forming a description of a set of 

states—for example, the goal ¬Poor 𝖠 Famous describes those states in which Poor is false, Famous 

is true, and any other fluent can have any value. If there are n ground fluents in a domain, then 

there are 2n ground states (each fluent can be true or false), but 3n descriptions of sets of goal 

states (each fluent can be positive, negative, or not mentioned). 

In general, backward search works only when we know how to regress from a state 

description to the predecessor state description. For example, it is hard to search backwards for a 

solution to the n-queens problem because there is no easy way to describe the states that are one 

move away from the goal. Happily, the PDDL representation was designed to make it easy to 

regress actions—if a domain can be expressed in PDDL, then we can do regression search on it. 

Given a ground goal description g and a ground action a, the regression from g over a gives us a 

state description g defined by 

 
. 

That is, the effects that were added by the action need not have been true before, and also the 

preconditions must have held before, or else the action could not have been executed. Note that 

DEL(a) does not appear in the formula; that’s because while we know the fluents in DEL(a) are no 

longer true after the action, we don’t know whether or not they were true before. 
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Unit 5 

 

 
RELEVANCE 

To get the full advantage of backward search, we need to deal with partially uninstanti- ated 

actions and states, not just ground ones. For example, suppose the goal is to deliver a spe- cific 

piece of cargo to SFO: At(C2, SFO). That suggests the action Unload(C2, p , SFO): 

 
Action(Unload(C2, p , SFO), 

PRECOND:In(C2, p ) 𝖠 At(p , SFO) 𝖠 Cargo(C2) 𝖠 Plane(p ) 𝖠 Airport(SFO) 

EFFECT:At(C2, SFO) 𝖠 ¬In(C2, p ) . 

 
(Note that we have standardized variable names (changing p to p   in this case) so that there will 

be no confusion between variable names if we happen to use the same action schema twice in a 

plan. The same approach was used in Chapter 9 for first-order logical inference.) This represents 

unloading the package from an unspecified plane at SFO; any plane will do, but we need not say 

which one now. We can take advantage of the power of first-order representations: a single 

description summarizes the possibility of using any of the planes by implicitly quantifying over p . 

The regressed state description is 

 

g = In(C2, p ) 𝖠 At(p , SFO) 𝖠 Cargo(C2) 𝖠 Plane(p ) 𝖠 Airport(SFO) . 

 
The final issue is deciding which actions are candidates to regress over. In the forward direc- tion 

we chose actions that were applicable—those actions that could be the next step in the plan. In 

backward search we want actions that are relevant—those actions that could be the last step in a 

plan leading up to the current goal state. 

For an action to be relevant to a goal it obviously must contribute to the goal: at least one of 

the action’s effects (either positive or negative) must unify with an element of the goal. What is less 

obvious is that the action must not have any effect (positive or negative) that negates an element of 

the goal. Now, if the goal is A 𝖠 B 𝖠 C and an action has the effect A𝖠B𝖠¬C then there is a 

colloquial sense in which that action is very relevant to the goal—it gets us two-thirds of the way 

there. But it is not relevant in the technical sense defined here, because this action could not be the 

final step of a solution—we would always need at least one more step to achieve C. 

Given the goal At(C2, SFO), several instantiations of Unload are relevant: we could chose 

any specific plane to unload from, or we could leave the plane unspecified by using the action 

Unload(C2, p , SFO). We can reduce the branching factor without ruling out any solutions by 

always using the action formed by substituting the most general unifier into the (standardized) 

action schema. 

As another example, consider the goal Own(0136042597), given an initial state with 

10 billion ISBNs, and the single action schema 
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A = Action(Buy(i), PRECOND:ISBN (i), EFFECT:Own(i)) . 

 

As we mentioned before, forward search without a heuristic would have to start enumer- 

ating the 10 billion ground Buy actions. But with backward search, we would unify the goal 

Own(0136042597) with the (standardized) effect Own(i ), yielding the substitution θ = {i 

/0136042597}. Then we would regress over the action Subst(θ, A ) to yield the predecessor 

state description ISBN (0136042597). This is part of, and thus entailed by, the initial state, so we 

are done. 

 
 

We can make this more formal. Assume a goal description g which contains 
a goal literal gi and an action schema A that is standardized to produce A . If A has 
an effect literal 
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0 

e 

i 

 
 

= SUBST(θ, A ) and if there is no effect in a that is the negation of a literal in g, 
then a is a relevant action towards g. 

w  Backward search keeps the branching factor lower than forward 
h search, for most prob- lem domains. However, the fact that backward 

r search uses state sets rather than individual states makes it harder to 
e come up with good heuristics. That is the main reason why the 

U majority of current systems favor forward search. 
n 
i 
f 
yPLANNING GRAPHS 

g 
All of the heuristics we have suggested can suffer from inaccuracies. 

T,his section shows how a special data structure called a planning graph can be 

uesed to give better heuristic estimates. These heuristics can be applied to any of the 

sej arch techniques we have seen so far. Alternatively, we can search for a solution 

o)ver the space formed by the planning graph, using an algorithm called 

GRAPHPLAN. 
= 

θ 
A planning problem asks if we can reach a goal state from the initial state. 

Suppose we are given a tree of all possible actions from the initial state to successor 

staates, and their suc- cessors, and so on. If we indexed this tree appropriately, we 
n 

cdould  answer  the  planning  ques-  tion  “can  we  reach  state  G  from  state  S0” 

im
w

mediately, just by looking it up.  Of course, the tree is of exponential size, so this 

ahpproach is impractical.  A planning graph is polynomial- size approximation  to this 

treee that can be constructed quickly. The planning graph can’t answer definitively 
r 

wehether G is reachable from S0, but it can estimate how many steps it takes to reach 

G. The estimate is always correct when it reports the goal is not reachable, and it 
w 

never overestimates the number of steps, so it is an admissible heuristic. 

d A planning graph is a directed graph organized into levels: first a level S0 for 
e 

thfe initial state, consisting of nodes representing each fluent that holds in S0; then a 

leivel A consisting of nodes for each ground action that might be applicable in 
n 

Se0; then alternating levels Si followed by Ai; until we reach a termination 

caondition (to be discussed later). 

Roughly speaking, Si contains all the literals that could hold at time i, 

depending on the actions executed at preceding time steps. If it is possible that either 

P or ¬P could hold, then both will be represented in Si. Also roughly speaking, Ai 

contains all the actions that could have their preconditions satisfied at time i. We 

say “roughly speaking” because the planning graph records only a restricted subset 

of the possible negative interactions among actions; therefore, a literal might show 

up at level Sj when actually it could not be true until a later level, if at all. (A literal 

will never show up too late.) Despite the possible error, the level j at which a literal 

first appears is a good estimate of how difficult it is to achieve the literal from the 

initial state. 
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I Action(Eat(Cake) 
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i PRECOND: Have(Cake) 
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EFFECT: ¬ Have(Cake) 𝖠 Eaten(Cake)) 

( 

H Action(Bake(Cake) 
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PRECOND: ¬ Have(Cake) 

v 

e EFFECT: Have(Cake)) 
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a Figure 10.7 The “have cake and eat cake too” problem. 
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) 
tion schemas. Despite the resulting increase in the size of the problem description, 

plan𝖠ning  graphs   have  proved  to  be  effective   tools  for  solving  hard  planning 

problems. 

EFigure 10.7 shows a simple planning problem, and Figure 10.8 shows its 
aplanning 
t 

graph. Each action at level Ai is connected to its preconditions at Si and its effects 

at Sin+1. So a literal appears because an action caused it, but we also want to say 

that (a literal can persist if no action negates it. This is represented by a persistence 

actioCn (sometimes called a no-op). For every literal C, we add to the problem a 

persi
a
stence action with precondition C and effect C. Level A0 in Figure 10.8 shows 

one k“real” action, Eat(Cake), along with two persistence actions drawn as small 

squaere boxes. 
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Level 

A0 

contains 

all the actions that could occur in state S0, but just as important it records conflicts 

between actions that would prevent them from occurring together. The gray lines in 

Figure 10.8 indicate mutual exclusion (or mutex) links. For example, Eat(Cake) is 

MUTEX mutually exclusive with the persistence of either Have(Cake) or 

¬Eaten(Cake). We shall see shortly how mutex links are computed. 

Level S1 contains all the literals that could result from picking any subset of the 

actions in A0, as well as mutex links (gray lines) indicating literals that could not 

appear together, regardless of the choice of actions. For example, Have(Cake) and 

Eaten(Cake) are m 
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